Trigonometry  Identities and proof
asked by
Sam
Respond to this Question
Similar Questions

algebra
Can someone please help me do this problem? That would be great! Simplify the expression: sin theta + cos theta * cot theta I'll use A for theta. Cot A = sin A / cos A Therefore: sin A + (cos A * sin A / cos A) = sin A + sin A = 2 
TRIG!
Posted by hayden on Monday, February 23, 2009 at 4:05pm. sin^6 x + cos^6 x=1  (3/4)sin^2 2x work on one side only! Responses Trig please help!  Reiny, Monday, February 23, 2009 at 4:27pm LS looks like the sum of cubes sin^6 x + 
Trigonometry
Please review and tell me if i did something wrong. Find the following functions correct to five decimal places: a. sin 22degrees 43' b. cos 44degrees 56' c. sin 49degrees 17' d. tan 11degrees 37' e. sin 79degrees 23'30' f. cot 
tigonometry
expres the following as sums and differences of sines or cosines cos8t * sin2t sin(a+b) = sin(a)cos(b) + cos(a)sin(b) replacing by by b and using that cos(b)= cos(b) sin(b)= sin(b) gives: sin(ab) = sin(a)cos(b)  cos(a)sin(b) 
Mathematics  Trigonometric Identities
Let y represent theta Prove: 1 + 1/tan^2y = 1/sin^2y My Answer: LS: = 1 + 1/tan^2y = (sin^2y + cos^2y) + 1 /(sin^2y/cos^2y) = (sin^2y + cos^2y) + 1 x (cos^2y/sin^2y) = (sin^2y + cos^2y) + (sin^2y + cos^2y) (cos^2y/sin^2y) = 
trig
it says to verify the following identity, working only on one side: cotx+tanx=cscx*secx Work the left side. cot x + tan x = cos x/sin x + sin x/cos x = (cos^2 x +sin^2x)/(sin x cos x) = 1/(sin x cos x) = 1/sin x * 1/cos x You're 
trig
Reduce the following to the sine or cosine of one angle: (i) sin145*cos75  cos145*sin75 (ii) cos35*cos15  sin35*sin15 Use the formulae: sin(a+b)= sin(a) cos(b) + cos(a)sin(b) and cos(a+b)= cos(a)cos(b)  sin(a)sin)(b) (1)The 
PreCalculus
I don't understand,please be clear! Prove that each equation is an identity. I tried to do the problems, but I am stuck. 1. cos^4 tsin^4 t=12sin^2 t 2. 1/cos s= csc^2 s  csc s cot s 3. (cos x/ sec x 1) (cos x/ tan^2x)=cot^2 x 
Math (Trig)
sorry, another I can't figure out Show that (1cot^2x)/(tan^2x1)=cot^2x I started by factoring both as difference of squares. Would I be better served by writing in terms of sine and cosine? Such as: 
PreCalculus
Prove that each equation is an identity. I tried to do the problems, but I am stuck. 1. cos^4 tsin^4 t=12sin^2 t 2. 1/cos s= csc^2 s  csc s cot s 3. (cos x/ sec x 1) (cos x/ tan^2x)=cot^2 x 4. sin^3 z cos^2 z= sin^3 z  sin^5 
verifying trigonometric identities
How do I do these problems? Verify the identity. a= alpha, b=beta, t= theta 1. (1 + sin a) (1  sin a)= cos^2a 2. cos^2b  sin^2b = 2cos^2b  1 3. sin^2a  sin^4a = cos^2a  cos^4a 4. (csc^2 t / cot t) = csc t sec t 5. (cot^2 t /