Calculus

Consider the curve given by y^2 = 2+xy

(a) show that dy/dx= y/(2y-x)

(b) Find all points (x,y) on the curve where the line tangent to the curve has slope 1/2.

(c) Show that there are now points (x,y) on the curve where the line tangent to the curve is horizontal.

(d) Let x and y be functions of time t that are related by the equation y^2 = 2 + xy. At time t=5, the value of y is 3 and dy/dt=6. Find the value of dx/dt at time t=5.

I was able to do part A, that was easy, but then with the rest of the parts I didn't know where to start. I know I should plug in 1/2 for the slope and solve but I have two variables of x and y. How should I go about solving these problems?

1. 👍
2. 👎
3. 👁
1. (B) You have two simultaneous equations in two variables. The original equation, and the derivative for specified values of dy/dx.

When dy/dx=1/2 :
1/2 = y/(2y-x)

Rearrange:
2y - x = 2y

Hence: x = 0

Substitute back into y2 = 2 + xy:

Therefore: y = ±√2

Answer: (0, -√2), and (0, +√2)

1. 👍
2. 👎

Similar Questions

1. AP Calculus

Consider the curve given by x^2+4y^2=7+3xy a) Show that dy/dx=(3y-2x)/(8y-3x) b) Show that there is a point P with x-coordinate 3 at which the line tangent to the curve at P is horizontal. Find the y-coordinate of P. c) Find the

Given the curve x^2-xy+y^2=9 A) write a general expression for the slope of the curve. B) find the coordinates of the points on the curve where the tangents are vertical C) at the point (0,3) find the rate of change in the slope

3. calculus

1. Given the curve a. Find an expression for the slope of the curve at any point (x, y) on the curve. b. Write an equation for the line tangent to the curve at the point (2, 1) c. Find the coordinates of all other points on this

4. last calc question, i promise!

given the curve x + xy + 2y^2 = 6... a. find an expression for the slope of the curve. i got (-1-y)/(x + 4y) as my answer. b. write an equation for the line tangent to the curve at the point (2,1). i got y = (-1/3)x + (5/3). but i

1. Mathematics

The gradient of a curve is defined by dy/dx = 3x^(1/2) - 6 Given the point (9, 2) lies on the curve, find the equation of the curve

2. calculus

Consider the curve given by the equation y^3+3x^2y+13=0 a.find dy/dx b. Write an equation for the line tangent to the curve at the point (2,-1) c. Find the minimum y-coordinate of any point on the curve. the work for these would

3. Calculus

A curve is defined by the parametric equations: x = t2 – t and y = t3 – 3t Find the coordinates of the point(s) on the curve for which the normal to the curve is parallel to the y-axis. You must use calculus and clearly show

4. Math

The line has equation y=2x+c and a curve has equation y=8-2x-x^2. 1) for the case where the line is a tangent to the curve, find the value of the constant c. 2) For the case where c = 11, find the x-coordinates of the points of

1. Calculus

Polar Equation Question The figure above shows the graph of the polar curve r=1−2cosθ for 0≤θ≤π and the unit circle r=1. ﻿(a) Find the area of the shaded region in the figure. Question 2 (b) Find the slope of the line

2. Calc

The slope of the tangent line to a curve is given by f'(x)=4x^2 + 7x -9. If the point ​(0,6​) is on the​ curve, find an equation of the curve.

3. math

A curve has implicit equation x^2-2xy+4y^2=12 a)find the expression for dy/dx in terms of y and x. hence determine the coordinates of the point where the tangents to the curve are parallel to the x-axis. b)Find the equation of the

4. calculus

Consider the curve defined by 2y^3+6X^2(y)- 12x^2 +6y=1 . a. Show that dy/dx= (4x-2xy)/(x^2+y^2+1) b. Write an equation of each horizontal tangent line to the curve. c. The line through the origin with slope -1 is tangent to the