Math

A box with an open top is to be made by cutting 5-inch squares from the corners of a rectangular piece of cardboard whose length is twice its width and then folding up the remaining flaps. Let x represent the width of the original piece of cardboard; express the volume (V) of the box as a function of x, and simplify the function.

asked by Delilah
  1. Width = x inches (given)
    Length = 2x inches(given)
    Height = 5 inches (given)

    Volume = 5*x*2x = 10x² in.3

    posted by MathMate

Respond to this Question

First Name

Your Response

Similar Questions

  1. Calculus

    An open top box is made by cutting congruent squares from the corners of a 12 inch by 9 inch sheet of cardboard and then folding the sides up to create the box. What are the dimensions of the box which contains the largest volume?
  2. math

    open top rectangular box made from 35 x 35 inch piece of sheet metal by cutting out equal size squares from the corners and folding up the sides. what size squares should be removed to produce box with maximum volume.
  3. Calculus

    an open top box is to be made by cutting congruent squares of side length x from the corners of a 12 by 15 inch sheet of tin and bending up the sides. how large should the squares be? what is the resulting maximum value?
  4. algebra

    Open-top box. Thomas is going to make an open-top box by cutting equal squares from the four corners of an 11 inch by 14 inch sheet of cardboard and folding up the sides. If the area of the base is to be 80 square inches, then
  5. Math

    A box with a rectangular base and no top is to be made from a 9 inch by 12 inch piece of cardboard by cutting squares out of the corners and folding up the sides. What size (side-length) squares should be cut out to make the box
  6. calculus

    An open box is to be made out of a 8-inch by 14-inch piece of cardboard by cutting out squares of equal size from the four corners and bending up the sides. Find the dimensions of the resulting box that has the largest volume.
  7. Pre-algebra

    Hey I'm having a lot of trouble with this question. An open box is to be made from a 20 inch by 40 inch piece of cardboard by cutting out squares of equal size from the four corners and bending up the sides. A) What size should
  8. calculus

    An open box is to be made out of a 10-inch by 14-inch piece of cardboard by cutting out squares of equal size from the four corners and bending up the sides. Find the dimensions of the resulting box that has the largest volume.
  9. Math

    An open box is to be made from a 11 inch by 11 inch piece of cardboad. this box is constructed by cutting squares that measure x inches on each side from the corners of the cardboard and turning up the sides. Use a graphical
  10. Calc

    An open box is to be made out of a 10-inch by 16-inch piece of cardboard by cutting out squares of equal size from the four corners and bending up the sides. Find the dimensions of the resulting box that has the largest volume.
  11. math- 165 calculas

    An open box is to be made from a eighteen-inch by eighteen-inch square piece of material by cutting equal squares from the corners and turning up the sides (see figure). Find the volume of the largest box that can be made. figure

More Similar Questions