
posted by MathMate
Respond to this Question
Similar Questions

Calculus
An open top box is made by cutting congruent squares from the corners of a 12 inch by 9 inch sheet of cardboard and then folding the sides up to create the box. What are the dimensions of the box which contains the largest volume? 
math
open top rectangular box made from 35 x 35 inch piece of sheet metal by cutting out equal size squares from the corners and folding up the sides. what size squares should be removed to produce box with maximum volume. 
Calculus
an open top box is to be made by cutting congruent squares of side length x from the corners of a 12 by 15 inch sheet of tin and bending up the sides. how large should the squares be? what is the resulting maximum value? 
algebra
Opentop box. Thomas is going to make an opentop box by cutting equal squares from the four corners of an 11 inch by 14 inch sheet of cardboard and folding up the sides. If the area of the base is to be 80 square inches, then 
Math
A box with a rectangular base and no top is to be made from a 9 inch by 12 inch piece of cardboard by cutting squares out of the corners and folding up the sides. What size (sidelength) squares should be cut out to make the box 
calculus
An open box is to be made out of a 8inch by 14inch piece of cardboard by cutting out squares of equal size from the four corners and bending up the sides. Find the dimensions of the resulting box that has the largest volume. 
Prealgebra
Hey I'm having a lot of trouble with this question. An open box is to be made from a 20 inch by 40 inch piece of cardboard by cutting out squares of equal size from the four corners and bending up the sides. A) What size should 
calculus
An open box is to be made out of a 10inch by 14inch piece of cardboard by cutting out squares of equal size from the four corners and bending up the sides. Find the dimensions of the resulting box that has the largest volume. 
Math
An open box is to be made from a 11 inch by 11 inch piece of cardboad. this box is constructed by cutting squares that measure x inches on each side from the corners of the cardboard and turning up the sides. Use a graphical 
Calc
An open box is to be made out of a 10inch by 16inch piece of cardboard by cutting out squares of equal size from the four corners and bending up the sides. Find the dimensions of the resulting box that has the largest volume. 
math 165 calculas
An open box is to be made from a eighteeninch by eighteeninch square piece of material by cutting equal squares from the corners and turning up the sides (see figure). Find the volume of the largest box that can be made. figure