cos u = 3/5; 0 < u < pi/2
cos v = 5/13; 3pi/2 < v < 2pi

sin (v + u)
cos (v - u)
tan (v + u)

First compute or list the cosine and sine of both u and v.

Then use the combination rules
sin (v + u) = sin u cos v + cos v sin u.
cos (v - u) = cos u cos v + sin u sin v
tan (u + v) = [tan u + tan v]/[1 - tan u tan v]

We got sin u = 4/5 & sin v = SQRT (7/13)

  1. 👍
  2. 👎
  3. 👁
  1. if cos u=3/5
    cos v=5/13
    then sin u=4/5 and sin v=12/13
    then sin(v+u)=sinv cos u+cos v sin u
    Tan u=4/3 and tan v=12/5 then

    1. 👍
    2. 👎

Respond to this Question

First Name

Your Response

Similar Questions

  1. Trigonometry

    Find all solutions of the equation in the interval [0, 2π). (Enter your answers as a comma-separated list.) cos(x+3pi/4) - cos(x-3pi/4) = 1

  2. Calculus

    Find the slope of the tangent line to the curve 2sin(x) + 6cos(y) - 6sin(x)cos(y) + x = 3pi at the point (3pi, 7pi/2) Thank you very much for your help.

  3. math

    if cos(B-C)+cos(C-A)+cos(A-B)=-3/2 then prove that cosA+cosB+cosC=O and sinA+sinB+sinC=O after that prove that cos(B-C)=cos(C-A)=cos(A-B)=-1/2

  4. Studying for Pre Cal exam

    Find the fourth roots of − 1/2 + (square root)3/2 i Write the roots in trigonometric form. A - w 1=cos(35°)+isin(35°) w2 =cos(125°)+isin(125°) w3 =cos(215°)+isin(215°) w4 =cos(305°)+isin(305°) B - w1

  1. Math

    Write z = 2(sqrt)2 + 2(sqrt)2i in polar form. z = 4(sqrt)2 (cos pi/4 + i sin pi/4) z = 4 (cos pi/4 + i sin pi/4) z = 4 (cos 5pi/4 + i sin 5pi/4) z = 4 (cos pi/2 + i sin pi/2) Write z = -6i in polar form. z = 6 cis 3pi/2 z = 6 cis

  2. Calculus

    Find all points on the graph of the function f(x) = 2 cos(x) + (cos(x))2 at which the tangent line is horizontal. Consider the domain x = [0,2π). I have pi/2 and 3pi/2 for x values. But when I plug them I get zero. Is this

  3. Math

    Find the exact value of cos 1 degree + cos 2 degrees + cos 3 degrees + ... + cos 357 + cos 358 degrees + cos 359 degrees.

  4. Algebra 2

    What values for theta(0

  1. Algebra

    Write an equation for the translation of the function. y = cos x; translated 6 units up A. y = cos x- ­ 6 B. y = cos(x + 6) C. y = cos x + 6 D. y = cos(x ­ 6) I think its B or c..

  2. Pre-Calculus-check answers

    State the period and phase shift of the function y=-4tan(1/2x + 3pi/8) a) 2pi, -3pi/4 b) pi, 3pi/8 c) 2pi, 3pi/8 d) pi, -3pi/8 Answer: d 2) What is the equation for the inverse of y=cos x+3: a) y=Arccos(x+3) b) y=Arccos x-3 c)

  3. self-study calculus

    Sketch the curve with the given vector equation. Indicate with an arrow the direction in which t increases. r(t)=cos(t)I -cos(t)j+sin(t)k I don't know what to do. I let x=cos(t), y=-cos(t) and z= sin(t). Should I let t be any

  4. calculus

    Differentiate. y= (cos x)^x u= cos x du= -sin x dx ln y = ln(cos x)^x ln y = x ln(cos x) (dy/dx)/(y)= ln(cos x) (dy/dx)= y ln(cos x) = (cos x)^x * (ln cos x) (dx/du)= x(cos x)^(x-1) * (-sin x) = - x sin(x)cos^(x-1)(x)

You can view more similar questions or ask a new question.