# calculus

By cutting away identical squares from each corner of a rectangular piece of cardboard and folding up the resulting flaps, an open box may be made. If the cardboard is 14 in. long and 6 in. wide, find the dimensions of the box that will yield the maximum volume. (Round your answers to two decimal places.)

1. 👍 1
2. 👎 1
3. 👁 3,206
1. The the side of the cut-out square be x inches
base of box = 14-2x by 6-2x
(clearly x < 3 )

volume = V = x(14-2x)(6-2x)
= 84x - 40x^2 + 4x^3
dV/dx = 84 - 80x + 12x^2
= 0 for a max V
divide by 4
3x^2 - 20x + 21 = 0
x = (20 ± √148)/6
= 5.36 or 1.306 inches, but remember x < 3

so x = 1.31 correct to 2 decimals

check: pick a value slightly greater and slightly less than our answer

let x = 1.3 , V = 1.3(14-2.6)(6-2.6) = 50.388
let x = 1.31 , V = 1.31(14-2.62)(6-2.62) = 50.38836
let x = 1.4 , V = 1.4(14-2.8)(6-2.8) = 50.176

x = 1.31 yields the greatest volume

1. 👍 2
2. 👎 1
2. The demand function for a certain make of replacement cartridges for a water purifier is given by the following equation where p is the unit price in dollars and x is the quantity demanded each week, measured in units of a thousand.

-0.01x^2-0.3x+19
Determine the consumers' surplus if the market price is set at \$1/cartridge. (Round your answer to two decimal places.)

1. 👍 0
2. 👎 1
3. Find the point on the graph where the tangent line is horizontal.
x/(x^2+25)

I know you have to do the quotient rule to find the derivative of the function, but I do not know what to do after that.

1. 👍 0
2. 👎 1

## Similar Questions

1. ### Calculus

A box (with no top) is to be constructed from a piece of cardboard of sides A and B by cutting out squares of length h from the corners and folding up the sides. Find the value of h that maximizes the volume of the box if A = 7

2. ### Calculus

Squares with sides of length x are cut out of each corner of a rectangular piece of cardboard measuring 3 ft by 4 ft. The resulting piece of cardboard is then folded into a box without a lid. Find the volume of the largest box

3. ### Pre Calculus

A piece of cardboard measuring 13 inches by 11 inches is formed into an open-top box by cutting squares with side length x from each corner and folding up the sides. a. Find a formula for the volume of the box in terms of x b.

4. ### math

an open rectangular box is to be formed by cutting identical squares, each of side 2 in, one from each corner of a rectangular piece of cardboard, and then turning up the ends. If the area of the piece of cardboard is 160 in² and

1. ### Algebra

A box with no top is to be constructed from a piece of cardboard whose length measures 6 inch more than its width. The box is to be formed by cutting squares that measure 2 inches on each side from the four corners an then folding

2. ### Math

A rectangular piece of cardboard measuring 12 cm by 18 cm is to be made into a box with an open top by cutting equal size squares from each corner and folding up the sides. Let x represent the length of a side of each square in

3. ### Algebra

You have to make a square-bottomed, unlidded box with a height of three inches and a volume of approximately 42 cubic inches. You will be taking a piece of cardboard, cutting three-inch squares from each corner, scoring between

4. ### Maths

A box with no top is to be built by taking a 6'' - by - 10'' sheet of cardboard and cutting x - in. squares out of each corner and folding up the sides. Find the value of x that maximizes the volume of the box.

1. ### Math

An open-topped box can be created by cutting congruent squares from each of the four corners of a piece of cardboard that has dimensions of 20cm by 30cm and folding up the sides. Determine the dimensions of the squares that must

2. ### Basic Calculus

A piece of cardboard measuring 14 inches by 8 inches is formed into an open-top box by cutting squares with side length x from each corner and folding up the sides. FIND: 1). a formula for the volume of the box in terms of x 2).

3. ### math

A square piece of cardboard is to be used to form a box without a top by cutting off squares, 5cm on a side, from each corner and then folding up the sides. if the volume of the box must be 320 sq. sm, what must be the length of a