# Calculus

Solve:
The posistion of a particle moving along a coordinate line is s=sqrt(5+4t), with s in meters and t in seconds.
Find the particle's velocity at t=1 sec.

A) 2/3 m/sec
B) 4/3 m/sec
C) -1/3 m/sec
D) 1/6 m/sec

Thank you!

1. 👍 0
2. 👎 0
3. 👁 801
1. Differentiate s(t). The derivative, ds/dt, is the speed as a function of t.

ds/dt = [(1/2)/sqrt(5 +4t)]*4
= 2/sqrt(5+4t)
At t = 1, this equals 2/(sqrt9) = 2/3

1. 👍 0
2. 👎 0

## Similar Questions

1. ### AP Calculus

A particle is moving along a horizontal straight line. The graph of the position function (the distance to the right of a fixed point as a function of time) is shown below. Answer the following questions only on the interval

2. ### uniten

3. At t = 0 , a particle leaves the origin with a velocity of 9.0 m/s in the positive y direction and moves in the xy plane with constant accelaration of ( 2.0i - 4.0j ) m/s2 . At the instant the x coordinate of the particle is 15

3. ### Calculus

A particle moves on a vertical line so that its coordinate at time t is 3 y = t − 12t+ 3, t≥ 0 . When is the particle moving upward and when is it moving downward? Find the distance that the particle travels in the first 3

4. ### math

Consider a particle moving along the x-axis where x(t) is the position of the particle at time t, x' (t) is its velocity, and x'' (t) is its acceleration. x(t) = t3 − 12t2 + 21t − 9, 0 ≤ t ≤ 10 Find the open t-intervals on

1. ### calculus

A particle is moving along the curve y= 3sqrt3x+1. As the particle passes through the point (5,12), its x-coordinate increases at a rate of 3 units per second. Find the rate of change of the distance from the particle to the

2. ### calculus

A particle is moving along the curve below. y = sqrt(x) As the particle passes through the point (4,2), its x-coordinate increases at a rate of 4 cm/s. How fast is the distance from the particle to the origin changing at this

3. ### Math:)

A person is on the outer edge of a carousel with a radius of 20 feet that is rotating counterclockwise around a point that is centered at the origin. What is the exact value of the position of the rider after the carousel rotates

4. ### physics

The position of a particle moving along an x axis is given by x = 15t2 - 2.0t3, where x is in meters and t is in seconds. (a) Determine the position, velocity, and acceleration of the particle at t = 3.0 s. x = m v = m/s a = m/s2

1. ### Calculus HELP

A particle is moving along the curve y=5 sqrt (2x+6). As the particle passes through the point (5,20 , its x-coordinate increases at a rate of 5 units per second. Find the rate of change of the distance from the particle to the

2. ### Math/Physics

The velocity v of a particle moving in the xy plane is given by v = (6.0t - 4.0t2) i + 4.0 j, with v in meters per second and t (> 0) is in seconds. What is the acceleration when t = 3.0 seconds? When is the acceleration zero?

3. ### math

For 4.95 seconds , a particle moves in a straight line according to the position function: s(t) = e^t(5-t)-5 . a. when id the particle at rest ? when is particle moving forward ? b. Find the total distance traveled by the particle

4. ### Physics

A particle starts from the origin at t = 0 and moves along the positive x axis. A graph of the velocity of the particle as a function of the time is shown in the figure; the v-axis scale is set by vs = 7.0 m/s. (a) What is the