calculus

test the series for convergence or divergence.
the sum from n=1 to infinity of ((-1)^n*e^n)/(n^3)
I said it converges because the derivative of (1/n^3) is decreasing

is this true?

1. 👍
2. 👎
3. 👁

Similar Questions

1. Calculus

The series the summation from n equals 1 to infinity of the quotient of negative 1 raised to the n plus 1 power and n is convergent. Use the Alternating Series Test to find an upper bound on the absolute error if the 7th partial

2. calculus

test the series for convergence or divergence using the alternating series test the sum from n=1 to infinity of (-1)^n/(3n+1) I said it converges, is this true?

3. Calculus

Match each series to the test that should be used to test for convergence/divergence. While it is possible that each test could apply to more than one series, in this exercise each is only used once. (4 points) 1. the summation

4. Calculus

State the convergence/divergence for the series the summation from n equals 1 to infinity of the product of negative 1 raised to the nth power and 2 raised to the nth power divided by n factorial . (4 points) A) Converges

1. Calculus

Use the nth term test for divergence to determine which, if any, of the following infinite series diverge(s). (10 points) I got D ( OR all of them ), did I do this right? I. the summation from n equals 1 to infinity of the nth

2. Calculus

Which of the following statements is true? (4 points) A) The nth term test can never be used to show that a series converges. B) The integral test can be applied to a series even if all the terms are not positive. C) The series

3. Calculus

Use the alternating series test to determine the convergence/divergence of the series the summation from n equals 1 to infinity of the product of negative 1 raised to the nth power and the quotient of 3 times n and the quantity 4

4. Calculus

Select the true statement for the series the summation from n=1 to infinity of n!/(2n-1) a) The series converges by the ratio test. b) The series diverges by the integral test. c) The series converges by the integral test. d) The

1. Calculus

Given that the series the summation (from n = 1 to infinity) ((-1)^(n + 1))/n is convergent, find a value of n for which the nth partial sum is guaranteed to approximate the sum of the series with an error of less than 0.0001. 9

2. Calculus

Which of the following statements is true? (4 points) A) The nth term test can never be used to show that a series converges. B) The integral test can be applied to a series even if all the terms are not positive. C) The series

3. Calculus

a) Find the Taylor series associated to f(x) = x^-2 at a = 1. Be sure to show the general term of the series. b) Find the radius of convergence of the series. c)Use Lagrange's Remainder Theorem to prove that for x in the interval

4. calc

use the root test to to determine the convergence or divergence of the series 100n/e^n