trig
 👍
 👎
 👁

 👍
 👎

 👍
 👎
Respond to this Question
Similar Questions

Math Help Please
What are the ratios for sin A and cos A? The diagram is not drawn to scale. Triangle Description AB = 29 AC = 20 BC  21 A. sin A = 20/29, cos A = 21/29 B. sin A = 21/29, cos A = 20/21 C. sin A = 21/29, cos A = 20/29****? D. sin

calculus
Find complete length of curve r=a sin^3(theta/3). I have gone thus (theta written as t) r^2= a^2 sin^6 t/3 and (dr/dt)^2=a^2 sin^4(t/3)cos^2(t/3) s=Int Sqrt[a^2 sin^6 t/3+a^2 sin^4(t/3)cos^2(t/3)]dt =a Int

Trig
Find sin(s+t) and (st) if cos(s)= 1/5 and sin(t) = 3/5 and s and t are in quadrant 1. =Sin(s)cos(t) + Cos(s)Sin(t) =Sin(1/5)Cos(3/5) + Cos(1/5)Sin(3/5) = 0.389418 Sin(st) =sin(s)cos(t)  cos(s)sin(t) =sin(3/5)cos(1/5) 

CALCULUS LIMITS
What is the following limit? lim as n goes to infinity of (pi/n) (sin(pi/n) + sin(2pi/n) + sin(3pi/n) +...+ sin(npi/n)) = I.) lim as n goes to infinity sigma (n and k=1) of pi/n sin(kpi/n) II.) Definite integral from 0 to pi of

Math:)
Explain why sin^1[sin(3pi/4)] does not = 3pi/4 when y=sin(x) and y=sin^1(x) are inverses. Any help on this question is greatly appreciated. Thank you!

Trigonometry
Stumped on this question  please explain! If sin A = 0.35, cos A = 0.94, sin B = 0.58, and cos B = 0.81, what is sin(A + B)? Am I just plugging the values into sin(A + B) or do I have to do more than that? Thank you.

Calculus
Which of the following definite integrals could be used to calculate the total area bounded by the graph of y = sin(x), the xaxis, x = 0, and x = π a) ∫ from π to 0 sin(x)dx b) ∫ from π to 0 sin(x)dx c) 2∫ from π to 0

Calculus
For the functions f(x) = sin x, show with the aid of the elementary formula sin^2 A = 1/2(1cos 2A) that f(x+y)  f(x) = cos x sin y2 sin x sin^2 (1/2y).

Trig
Sin(Xy)sin(x+y)=sin^2 x  sin^2 y work on one side only...so i worked on the right =(sinxsiny)(sinx+siny) does that equal sin(xy)sin(x+y)??? help!

math
Can you please check my work. A particle is moving with the given data. Find the position of the particle. a(t) = cos(t) + sin(t) s(0) = 2 v(0) = 6 a(t) = cos(t) + sin(t) v(t) = sin(t)  cos(t) + C s(t) = cos(t)  sin(t) + Cx + D

Trigonometry
Solve the equation for solutions in the interval 0

calculus
Find the points on the curve y= (cos x)/(2 + sin x) at which the tangent is horizontal. I am not sure, but would I find the derivative first: y'= [(2 + sin x)(sin x)  (cos x)(cos x)]/(2 + sin x)^2 But then I don't know what to
You can view more similar questions or ask a new question.