calculus
 👍
 👎
 👁
Respond to this Question
Similar Questions

calculus
Determine whether the sequence converges or diverges. If it converges, find the limit. (If an answer does not exist, enter DNE.) An = cos(n/8)

Calculus
Determine whether the sequence converges or diverges. If it converges, find the limit. (If an answer does not exist, enter DNE.) limit n approaches infinity of an = e^(−6/sqrt(n))

Math
Does the following infinite geometric series diverge or converge? Explain. 3 + 9 + 27 + 81 + . . . A) It diverges; it does not have a sum. B) It converges; it has a sum.*** C) It diverges; it has a sum. D) It converges; it does

Calculus
Which of the following statements is true for the series the summation from n=0 to infinity of (1)^n and 5/4^n? a) The series diverges because it is geometric with r = 5/4 and a = –1. b) The series converges to 4 because it is

calculus
Determine whether the sequence converges or diverges. If it converges, find the limit. (If an answer does not exist, enter DNE.) {0, 4, 0, 0, 4, 0, 0, 0, 4, ...}

Math
Does the following infinite geometric series diverge or converge? Explain. 1/7+1/28+1/112+1/448 A) It converges; it has a sum.*** B) It diverges; it does not have a sum. C) It diverges; it has a sum. D) It converges; it does not

calculus
test the series for convergence or divergence using the alternating series test the sum from n=1 to infinity of (1)^n/(3n+1) I said it converges, is this true?

Calculus
Determine whether the integral is divergent or convergent. If it is convergent, evaluate it and enter that value as your answer. If it diverges to infinity, state your answer as "INF" (without the quotation marks). If it diverges

Math
Does the following infinite geometric series diverge or converge? Explain. 1/5 + 1/25 + 1/125 + 1/625 A) It diverges; it has a sum. B) It converges; it has a sum. C) It diverges; it does not have a sum. D) It converges; it does

Calculus
How many terms of the series the summation from n equals 1 to infinity of the quotient of negative 1 raised to the n plus 1 power and n do we need to add in order to find the sum with an absolute value of its error to be less than

calculus
Which of the following statements is true for the series the summation from n equals 0 to infinity of the nth power of the quotient of pi and e? A. Converges to the quotient of e and the quantity e minus pi B. Converges to the

Calculus
State the convergence/divergence for the series the summation from n equals 1 to infinity of the product of negative 1 raised to the nth power and 2 raised to the nth power divided by n factorial . (4 points) A) Converges
You can view more similar questions or ask a new question.