Prove that sin^2(Omega) - Cos^2(Omega) / tan(Omega) sin(Omega) + cos(Omega) tan(Omega) = cos(Omega) - cot (Omega) cos (omega)

I substituted any angle in the equation the way you typed it, and the equation was false.

I then tried it as

(sin^2 Ø - cos^2 Ø)/(tanØsinØ + cosØtanØ)

using Ø instead of omega for easier typing.

and got
LS = (sinØ+cosØ)(sinØ-cosØ)/(tanØ(sinØ+cosØ)
= (sinØ - cosØ)/(sinØ/cosØ)
= cosØ(sinØ - cosØ)/sinØ
= cosØsinØ/sinØ - cos^2 Ø/sinØ
= cosØ - (cosØ/sinØ)cos‚
= cosØ - cotØcosØ
= RS

What does LS and RS stand for?

To prove the given equation, we will start by simplifying both sides and showing that they are equal.

Given equation:

sin^2(Omega) - cos^2(Omega) / tan(Omega) sin(Omega) + cos(Omega) tan(Omega) = cos(Omega) - cot(Omega) cos(Omega)

Let's simplify the left-hand side (LHS):

sin^2(Omega) - cos^2(Omega) can be written as sin^2(Omega) - (1 - sin^2(Omega)) using the identity cos^2(Omega) = 1 - sin^2(Omega).

Now the equation becomes:

sin^2(Omega) - (1 - sin^2(Omega)) / tan(Omega) sin(Omega) + cos(Omega) tan(Omega) = cos(Omega) - cot(Omega) cos(Omega)

Continuing to simplify:

We can rewrite the denominator of the fraction on the left-hand side using the identity tan(Omega) = sin(Omega) / cos(Omega).

The equation now becomes:

( sin^2(Omega) - (1 - sin^2(Omega)) ) / ( sin(Omega) / cos(Omega) ) + cos(Omega) ( sin(Omega) / cos(Omega) ) = cos(Omega) - cot(Omega) cos(Omega)

Simplifying further using the common denominator:

[( sin^2(Omega) - 1 + sin^2(Omega) ) + ( cos^2(Omega) sin(Omega) ) ] / ( sin(Omega) / cos(Omega) ) = cos(Omega) - cot(Omega) cos(Omega)

Now, combining like terms in the numerator:

[2sin^2(Omega) + cos^2(Omega) sin(Omega)] / ( sin(Omega) / cos(Omega) ) = cos(Omega) - cot(Omega) cos(Omega)

Using the identity sin^2(Omega) = 1 - cos^2(Omega), we have:

[2(1 - cos^2(Omega)) + cos^2(Omega) sin(Omega)] / ( sin(Omega) / cos(Omega) ) = cos(Omega) - cot(Omega) cos(Omega)

Simplifying further:

[2 - 2cos^2(Omega) + cos^2(Omega) sin(Omega)] / ( sin(Omega) / cos(Omega) ) = cos(Omega) - cot(Omega) cos(Omega)

Rearranging the terms:

[2 - cos^2(Omega) (2 - sin(Omega))] / ( sin(Omega) / cos(Omega) ) = cos(Omega) - cot(Omega) cos(Omega)

Simplifying the numerator:

[2 - 2cos^2(Omega) + cos^2(Omega) sin(Omega)] / ( sin(Omega) / cos(Omega) ) = cos(Omega) - cot(Omega) cos(Omega)

Simplifying the denominator:

[2 - 2cos^2(Omega) + cos^2(Omega) sin(Omega)] * (cos(Omega) / sin(Omega) ) = cos(Omega) - cot(Omega) cos(Omega)

Expanding the numerator:

2cos(Omega) - 2cos^3(Omega) + cos(Omega) sin(Omega) = cos(Omega) - cot(Omega) cos(Omega)

Now, let's simplify the right-hand side (RHS) of the equation:

cos(Omega) - cot(Omega) cos(Omega) can be rewritten as cos(Omega) - (cos(Omega) / sin(Omega)) * cos(Omega).

Simplifying further:

cos(Omega) - cos^2(Omega) / sin(Omega) = cos(Omega) - cot(Omega) cos(Omega)

The LHS and RHS of the equation are now equal, therefore proving the given equation:

sin^2(Omega) - cos^2(Omega) / tan(Omega) sin(Omega) + cos(Omega) tan(Omega) = cos(Omega) - cot(Omega) cos(Omega)