to evaluate (integral) 3x^2 cos (2x^3-4) dx, it is necessary to let

A. u=3x^2
B. u=6x
C. u=2x^3-4
D. u=6x^2

  1. 👍 0
  2. 👎 0
  3. 👁 102
  1. C

    then du = 2(3x^2) dx

    1. 👍 0
    2. 👎 0

Respond to this Question

First Name

Your Response

Similar Questions

  1. Calculus

    I have two questions, because I'm preparing for a math test on monday. 1. Use the fundamental theorem of calculus to find the derivative: (d/dt) the integral over [0, cos t] of (3/5-(u^2))du I have a feeling I will be able to find

    asked by Jennifer on May 9, 2009
  2. Math

    Evaluate the integral of (sin 2x)/(1+cos^2 x) 1. u=cosx and du=-sinx *dx 2. evaluate the integral of -1/(1+u^2)*du 3. result is -ln(1+u^2)+C Where did the sin2x dissapear too???

    asked by Dave on September 13, 2017
  3. Calculus

    Hello, I have some calculus homework that I can't seem to get least not on the right track? I have 3 questions 1. integral of [(p^5)*(lnp)dp] I'm using the uv-integral v du formula So first, I'm finding u and I think

    asked by Shelley on January 23, 2007
  4. trig integration

    s- integral endpoints are 0 and pi/2 i need to find the integral of sin^2 (2x) dx. i know that the answer is pi/4, but im not sure how to get to it. i know: s sin^2(2x)dx= 1/2 [1-cos (4x)] dx, but then i'm confused. The indefinite

    asked by christine on February 18, 2007
  5. calculus

    a) Let f(z) = z^2 and γ(t) = 1 + it^3, t ∈ [0,1]. i) Write out the contour integral ∫γ f(z)dz as an integral with respect to t. You do not need to evaluate this integral. ii) Evaluate the integral ∫0,1+i z^2dz iii) What is

    asked by jack on March 5, 2016
  1. math

    Evaluate the following indefinite integral by using the given substitution to reduce the integral to standard form integral cos(9x) dx, u=9x

    asked by vishal on September 10, 2013
  2. K

    (a) Find the indefinite integrals of the following functions. (i) f (t) = 6 cos(3t) + 5e^−10t (ii) g(x) = 21-12x^3/ x (x > 0) (iii) h(u) = cos^2( 1/8 u) (b) Evaluate: (this big F sign at the start, 5 at the top and 1 at the

    asked by maths on March 24, 2008
  3. Integral

    That's the same as the integral of sin^2 x dx. Use integration by parts. Let sin x = u and sin x dx = dv v = -cos x du = cos x dx The integral is u v - integral of v du = -sinx cosx + integral of cos^2 dx which can be rewritten

    asked by drwls on February 20, 2007
  4. Integration by Parts

    integral from 0 to 2pi of isin(t)e^(it)dt. I know my answer should be -pi. **I pull i out because it is a constant. My work: let u=e^(it) du=ie^(it)dt dv=sin(t) v=-cos(t) i integral sin(t)e^(it)dt= -e^(it)cos(t)+i*integral

    asked by Ashley on April 16, 2015
  5. Calculus

    Evaluate the integral: 16csc(x) dx from pi/2 to pi (and determine if it is convergent or divergent). I know how to find the indefinite integral of csc(x) dx, but I do not know how to evaluate the improper integral, at the

    asked by Sam on June 5, 2012
  6. Math/Calculus

    How would I integrate the following by parts: Integral of: (x^2)(sin (ax))dx, where a is any constant. Just like you did x^2 exp(x) below. Also partial integration is not the easiest way to do this integral. You can also use this

    asked by COFFEE on May 28, 2007

More Similar Questions