Physics

A sinusoidal wave traveling on a string is moving in the positive x-direction. The wave has a wavelength of 8 m, a frequency of 60 Hz, and an amplitude of 9 cm. What is the wave function for this wave? (Use any variable or symbol stated above as necessary.)

I think the function follows this format:
y(x,t)=A*sin(kx-wt+phase shift), but im not sure how apply it to this problem. Any help or suggestions is appreciated, thank you!

  1. 5
asked by Bruce
  1. Look at the first link in Ralated questions.

    posted by Elena
  2. thank you very much!

    posted by Bruce

Respond to this Question

First Name

Your Response

Similar Questions

  1. Physics

    A sinusoidal wave traveling on a string is moving in the positive x-direction. The wave has a wavelength of 6 m, a frequency of 48 Hz, and an amplitude of 9 cm. What is the wave function for this wave? (Use any variable or symbol
  2. physics

    . A long string carries a wave; a 6-m segment of the string contains four complete wavelengths and has a mass of 180 g. The string vibrates sinusoidal with a frequency of 50 Hz and a peak-to-valley displacement of 15 cm. (The
  3. physics

    A sinusoidal wave on a string is described by the equation y = (0.169 m) sin (0.713 x - 41.9 t), where x and y are in meters and t is in seconds. If the linear mass density of the string is 10.1 g/m ... a) ... the phase of the
  4. physics please helpp

    A sinusoidal wave on a string is described by the equation y = (0.169 m) sin (0.713 x - 41.9 t), where x and y are in meters and t is in seconds. If the linear mass density of the string is 10.1 g/m ... a) ... the phase of the
  5. physics

    A sinusoidal wave on a string is described by the equation y = (0.169 m) sin (0.713 x - 41.9 t), where x and y are in meters and t is in seconds. If the linear mass density of the string is 10.1 g/m ... a) ... the phase of the
  6. physics

    A sinusoidal wave on a string is described by the equation y = (0.169 m) sin (0.713 x - 41.9 t), where x and y are in meters and t is in seconds. If the linear mass density of the string is 10.1 g/m ... a) ... the phase of the
  7. Physics

    A sinusoidal wave is traveling on a string with speed 30.00 cm/s. The displacement of the particles of the string at x = 15 cm is found to vary with time according to the equation y = (5.0 cm) sin[1.5 - (3.0 s-1)t]. The linear
  8. AP Physic

    Hi there I am having so much problems trying to solve this physic problem and I really need help. Please give me a big hint on how to find the amplitude of this problem because i tried using everything i know and i cannot figure
  9. physics

    A sinusoidal wave on a string is described by the equation y = (0.169 m) sin (0.713 x - 41.9 t), where x and y are in meters and t is in seconds. If the linear mass density of the string is 10.1 g/m .. if needs values of these (
  10. physics

    Let f be the frequency, v wav the speed, and T the period of a sinusoidal traveling wave. The correct relationship is: a)f=1/T b)f=vwav + T c)f=vwavT d)f=vwav/T e)f=T/vwav My thoughts: I think the answer is D.Since frequency is

More Similar Questions