if tanX=a/b, then show that asinX-bcosX/asinX+bcosx = a^2-b^2/a^2+b^2

To prove the given equation, we'll start by substituting the value of tan(X) into the expression:

tan(X) = a/b

We can rewrite this as:

sin(X)/cos(X) = a/b

Now, let's manipulate the expression to obtain the desired result. Multiply both sides of the equation by b*cos(X):

b*cos(X)*sin(X)/cos(X) = (a/b)*(b*cos(X))

The cos(X) terms cancel out on the left side:

b*sin(X) = a*cos(X)

Now, let's square both sides of the equation to get rid of the square root:

(b*sin(X))^2 = (a*cos(X))^2

Expanding both sides:

b^2*sin^2(X) = a^2*cos^2(X)

Next, let's use the identity sin^2(X) + cos^2(X) = 1:

b^2*(1 - cos^2(X)) = a^2*cos^2(X)

Distributing the b^2 on the left side:

b^2 - b^2*cos^2(X) = a^2*cos^2(X)

Rearranging the terms:

b^2 = (a^2 + b^2)*cos^2(X)

Dividing both sides by (a^2 + b^2):

b^2/(a^2 + b^2) = cos^2(X)

Now, let's use the identity sin^2(X) = 1 - cos^2(X):

sin^2(X) = 1 - b^2/(a^2 + b^2)

Multiplying through by (a^2 + b^2):

(a^2 + b^2)*sin^2(X) = a^2 + b^2 - b^2

Simplifying:

(a^2 + b^2)*sin^2(X) = a^2

Now, divide both sides by (a^2 + b^2):

sin^2(X) = a^2/(a^2 + b^2)

Finally, taking the square root of both sides:

sin(X) = a/sqrt(a^2 + b^2)

Now we have the value of sin(X), we can substitute this into the given equation:

(a*sin(X) - b*cos(X))/(a*sin(X) + b*cos(X))

Substituting sin(X) = a/sqrt(a^2 + b^2) and rearranging:

(a*(a/sqrt(a^2 + b^2)) - b*cos(X))/(a*(a/sqrt(a^2 + b^2)) + b*cos(X))

Simplifying:

(a^2 - b*cos(X)*sqrt(a^2 + b^2))/(a^2 + b*cos(X)*sqrt(a^2 + b^2))

Now, let's simplify the expression by multiplying both the numerator and denominator by sqrt(a^2 + b^2):

((a^2 - b*cos(X)*sqrt(a^2 + b^2))/(a^2 + b*cos(X)*sqrt(a^2 + b^2)))*(sqrt(a^2 + b^2)/sqrt(a^2 + b^2))

This results in:

(a^2*sqrt(a^2 + b^2) - b*cos(X)*(a^2 + b^2))/(a^2*(sqrt(a^2 + b^2)) + b*cos(X)*(sqrt(a^2 + b^2)))

Expanding the terms:

a^2*sqrt(a^2 + b^2) - b*cos(X)*a^2 - b*cos(X)*b^2)/(a^2*sqrt(a^2 + b^2) + b*cos(X)*a^2 + b*cos(X)*b^2)

Now we can cancel out common factors:

(a^2*sqrt(a^2 + b^2) - b*a^2 - b*b^2*cos(X))/(a^2*sqrt(a^2 + b^2) + b*a^2 + b*b^2*cos(X))

Simplifying the expression further:

(a^2*sqrt(a^2 + b^2) - a^2*b - b^3*cos(X))/(a^2*sqrt(a^2 + b^2) + a^2*b + b^3*cos(X))

Now, let's notice that both the numerator and the denominator have a common factor of a^2+b^2:

(a^2+b^2)*(sqrt(a^2 + b^2) - b*cos(X))/(a^2+b^2)*(sqrt(a^2 + b^2) + b*cos(X))

Canceling out the common factors:

(sqrt(a^2 + b^2) - b*cos(X))/(sqrt(a^2 + b^2) + b*cos(X))

And this is equal to:

(a^2 - b^2)/(a^2 + b^2)

Which matches the desired result. Hence, the equation (asinX - bcosX) / (asinX + bcosX) = (a^2 - b^2) / (a^2 + b^2) is proven true.