Physics!

A 20 kg square slab with side lengths 3.0 m rotates around an axis perpendicular to the slab. A particle of mass 0.60 kg sits on each of the corners of the square. Also, a particle of mass 0.80 kg sits at the center of each of the edges. What is the moment of inertia of the system?

1. 👍 0
2. 👎 0
3. 👁 247
1. m1=20 kg, a=3 m,
I1 =m•a²/6 = 20•9/6 =30 kg•m²
m2 =0.6 kg , b =a•√2/2=3•√2/2 =2.13 m.
I2 =mb²=0.6•2.13²= 2.7 kg•m²
m3 = 0.8 kg, c=a/2 =1.5 m.
I3=mc²=0.8• 1.5² =1.8 kg•m².

I =I1+4•I2+4•I3 = 30+4•(2.7+1.8) =48 kg•m².

1. 👍 0
2. 👎 0

Similar Questions

1. friction

A 40 kg slab rests on a friction less floor.a 10 kg block rests on top of the slab.the coefficient kinetic friction between the block and the slab is 0.40.a horizontal force of 100N is applied on the 10 kg block.find the resulting

2. math

The perimeter of the small square is one-third the perimeter of the large square. What are the side lengths of the squares? small square side = x large square side = x + 2

3. math

The height of a square-based box is 4 cm more than the side length of its square base. If the volume of the box is 225 cm3. What are its dimensions? So this is what I did: v = l x w x h v = 1x x 1x x (x+4) v = 2x^2 + 8x 225 = 2x^2

4. Physics (EMI)

A metal disc of radius R rotates with angular velocity Omega (w) about an axis perpendicular to its plane passing through its centre in a magnetic field B acting perpendicular to the plane of the disc calculate the induced EMF

1. geometry

A square has side lengths of 4x - 3 and 2x - 5. What is the area of the square?

2. Physics

A single-turn square loop of side L is centered on the axis of a long solenoid. In addition, the plane of the square loop is perpendicular to the axis of the solenoid. The solenoid has 1490 turns per meter and a diameter of 6.00

3. Calculus

A base of a solid is the region bounded by y=e^-x, the x axis, the y axis, and the line x=2. Each cross section perpendicular to the x-axis is a square Find the volume of the solid

4. Math

you can draw a square inside another square by placing each vertex of the inner square on one side of the outer square. The large square in this diagram has side length 10 units a) Determine the area of the inscribed square as a

1. IRSC

the sum of the lengths of any two sides of a triangle must be greater than the third side. If a triangle has one side that 17 inches and a second side that is 1 inch less than twice the thrid side, what are the possible lengths

2. physics

As shown in the figure, a block of mass M1 = 0.470 kg is initially at rest on a slab of mass M2 = 0.850 kg, and the slab is initially at rest on a level table. A string of negligible mass is connected to the slab, runs over a

3. physics

figure 3.1 shows a rectangular concrete slab of weight 18000N. It rests on a brick wall and is the roof of a bus shelter. The concrete slab is 3.0 m wide. The wall is 2.5 m from the front of the concrete slab and 0.50 m from the

4. Physics

A square, 0.52 m on a side, is mounted so that it can rotate about an axis that passes through the center of the square. This axis is perpendicular to the plane of the square. A force of 15.0 N lies in this plane and is applied to