calculus

Solve the equation:

Cos^2x + cosx + 0

  1. 👍 0
  2. 👎 0
  3. 👁 169
  1. no equation

    If you mean cos^2x + cosx = 0 then we have

    cosx(cosx+1)=0
    cosx = 0 or -1
    x = pi/2 or pi or 3pi/2

    1. 👍 0
    2. 👎 0

Respond to this Question

First Name

Your Response

Similar Questions

  1. Trigonometry

    4. Find the exact value for sin(x+y) if sinx=-4/5 and cos y = 15/17. Angles x and y are in the fourth quadrant. 5. Find the exact value for cos 165degrees using the half-angle identity. 1. Solve: 2 cos^2x - 3 cosx + 1 = 0 for 0

  2. Pre-calculus

    Prove the following identities. 1. 1+cosx/1-cosx = secx + 1/secx -1 2. (tanx + cotx)^2=sec^2x csc^2x 3. cos(x+y) cos(x-y)= cos^2x - sin^2y

  3. Trig.......

    I need to prove that the following is true. Thanks (2tanx /1-tan^x)+(1/2cos^2x-1)= (cosx+sinx)/(cosx - sinx) and thanks ........... check your typing. I tried 30º, the two sides are not equal, they differ by 1 oh , thank you Mr

  4. maths

    (Sin^3x-cos^3x)/(sinx-cosx) – cosx/sqrt(1+cot^2x)-2tanxcotx=-1 where x∈(0,2pi) general value of x.

  1. math;)

    The equation 2sinx+sqrt(3)cotx=sinx is partially solved below. 2sinx+sqrt(3)cotx=sinx sinx(2sinx+sqrt(3)cotx)=sinx(sinx) 2sin^2x+sqrt(3)cosx=sin^2x sin^2x+sqrt(3)cosx=0 Which of the following steps could be included in the

  2. Math help again

    cos(3π/4+x) + sin (3π/4 -x) = 0 = cos(3π/4)cosx + sin(3π/4)sinx + sin(3π/4)cosx - cos(3π/4)sinx = -1/sqrt2cosx + 1/sqrt2sinx + 1/sqrt2cosx - (-1/sqrt2sinx) I canceled out -1/sqrt2cosx and 1/sqrt2cosx Now I have 1/sqrt sinx +

  3. Trig Identities

    Prove the following identities: 13. tan(x) + sec(x) = (cos(x)) / (1-sin(x)) *Sorry for any confusing parenthesis.* My work: I simplified the left side to a. ((sinx) / (cosx)) + (1 / cosx) , then b. (sinx + 1) / cosx = (cos(x)) /

  4. inverse

    If f(x)=cosx + 3 how do I find f inverse(1)? Thanks y = cos(x) + 3 the inverse of this is x = cos(y) + 3 solve for y and you have your inverse The cos function only has a range of [-1,1], so the range of f(x) is [2,4]. this means

  1. Math

    Explain how to do this with steps please. 1. Simplify cos(x-y)+cos(x+y)/cosx I did some of these so far, don't know if it is correct. Formula: cosxcosy= cos(x+y)+cos(x-y)/2 cos(x-y)+cos(x+y)/cosx =cosxcosy/2cosx

  2. Pre-calculus

    solve 4 sin^2x + 4 sqrt 2 cos x-6=0 for all real values of x. Going by the example in the book I got to: 4 cos^2x + 4sqrt2 cosx -10 = 0 but do not know how to proceed. Any help would be great. Thanks

  3. Math

    Suppose f(x) = sin(pi*cosx) On any interval where the inverse function y = f –1(x) exists, the derivative of f –1(x) with respect to x is: a)-1/(cos(pi*cosx)), where x and y are related by the equation (satisfy the equation)

  4. trigonometry

    how do i simplify (secx - cosx) / sinx? i tried splitting the numerator up so that i had (secx / sinx) - (cosx / sinx) and then i changed sec x to 1/ cosx so that i had ((1/cosx)/ sinx) - (cos x / sinx) after that i get stuck

You can view more similar questions or ask a new question.