# Physics 121

Two block are connected by a rope that runs over a pulley. The block on the tables has mass 4kg, the hanging block has mass 2kg, and the pulley has mass 0.5kg and radius 0.25m. Assume that the table is friction-less. If the block are released from the rest, determine their speeds after the hanging block has dropped 0.75m.

Please explain the formula and steps. Thanks.

1. m1 =4 kg, m2 = 2 kg, m = 0.5 kg, R = 0.25 m, h= 0.75 m.

Projections of the equation according to the 2 Newton's law for two blocks on the horizontal (for the 1st block)and on the vertical (fot the 2nd block) axis:
m1•a = T1
m2•a =m2•g-T2,
The equation of the pulley motion (2nd Nerton's law, for the rotational motion)
I•ε =M.

The moment of inertia of the pulley (disk) is
I =m•R²/2 ,
M = torque = (T1-T2)•R,
ε = a/R,
I•ε =M => m•R²•a/2•R =(T1-T2) •R =>
m•a/2 = (T1-T2).
m1•a + m2•a = T1 + m2•g -T2 = m2•g + (T1-T2) = m2•g +m•a/2,
a = m2•a/[m1+m2-m(m/2)] =
= 2•9.8/(4+2+0.125)=3.336 m/s^2,
a = v^2/2•h ,
v=sqrt(2•a•h) = sqrt(2•3.336•0.75) =
= 2.2 m/s^2

posted by Elena

## Similar Questions

1. ### Physics 121

Two block are connected by a rope that runs over a pulley. The block on the tables has mass 4kg, the hanging block has mass 2kg, and the pulley has mass 0.5kg and radius 0.25m. Assume that the table is friction-less. If the block
2. ### physic

A block with mass m1 hangs from a rope that is extended over an ideal pulley and attached to a second block with mass m2 that sits on a ledge. The second block is also connected to a third block with mass m3 by a second rope that
3. ### Physics

calculate the acceleration of this system, assuming that there are no frictional forces between the table and Block A. Block A is sitting on a table connected by a rope to a pulley system and Block B is hanging off the table
4. ### physics

A marble block of mass m1 = 500.1 kg and a granite block of mass m2 = 237.4 kg are connected to each other by a rope that runs over a pulley, as shown in the figure. Both blocks are located on inclined planes with angles á = 35.3
5. ### Physics

A block of mass m1 is on top of a block of mass m2. Block 2 is connected by an ideal rope passing through a pulley to a block of unknown mass m3 as shown. The pulley is massless and frictionless. There is friction between block 1
6. ### Physics Dynamics

A 4-kg block is connected by means of a massless rope to a 2-kg block. What is the magnitude of the acceleration if the coefficient of kinetic friction between the 4-kg block and the surface is 0.20? Note : The 4kg block is on the
7. ### Physics

A rope connects a 40 kg block to a 30 kg block. The rope passes over a pulley at the top of a 37° incline. The 40 kg block rests on the incline and the 30 kg block hangs from the pulley. Calculate the acceleration of either
8. ### Physics

A 1.5 kg block is connected by a rope across a 50-cm-diameter, 2.0 kg, frictionless pulley. A constant 10 N tension is applied to the other end of the rope. Starting from rest, how long does it take the block to move 30 cm?
9. ### science

In the system shown in the figure , block A has mass m_A = 2.08 kg, block B has mass m_B = 0.370 kg, and the rope connecting them has a nonzero mass 0.203 kg. The rope has a total length 1.03 m and the pulley has a very small
10. ### Physics

A block of mass 2.30kg is accelerated across a rough surface by a rope passing over a pulley. a) The tension in the rope is 12.4N, and the pulley is 11.2cm above the top of the block. The coefficient of kinetic friction is 0.415.

More Similar Questions