Physics

8. When a person stands on a rotating merry go round, the frictional force exerted on the person by the merry go round is
(A) greater in magnitude than the frictional force exerted on the person by the merry go round
(B) opposite in direction to the frictional force exerted on the merry go round by the person
(C) directed away from the center of the merry go round
(D) zero if the rate of rotation is constant
(E) independent of the person's mass

I have that the answer is b, but why isn't it E?

  1. 👍
  2. 👎
  3. 👁
  1. two narrow slits 0.12 mm apart. Light of wavelength 550n illuminates the slits, causeing an interference pattern on a screen 1.0 m away. Light from each slit travels to the m = 1 maximum on the right side of the central maximum. How much farther did the light from the left slit travel then the light from the right slit? ....

    where do i begin and how do i get the answer

    1. 👍
    2. 👎
  2. Brad, you might be dead now because you posted in2008, but it isn't independent of mass because the force of friction is the coefficient of static friction times normal force, and normal force=MASS*g.

    1. 👍
    2. 👎

Respond to this Question

First Name

Your Response

Similar Questions

  1. physics

    A teenager pushes tangentially on a small hand-driven merry-go-round and is able to accelerate it from rest to a frequency of 12 in 9.0 . Assume the merry-go-round is a uniform disk of radius 2.2 and has a mass of 650 , and two

  2. Physics

    1.) jet plane traveling 1800 km/h (500 m/s) pulls out of a dive by moving in an arc of radius 6.00 km. What is the plane's acceleration in g's? 6.) A child on a merry -go-round is moving with a speed of 1.35 m/s when 1.20 m from

  3. physics

    A merry-go-round revolves at a rate of 8.3 rev/min. A child who is seated at the outer edge of the merry-go-round travels at 6.9m/s. What is the diameter of the merry-go-round?

  4. Physics

    A merry-go-round with a a radius of R = 1.95 m and moment of inertia I = 192 kg-m2 is spinning with an initial angular speed of ω = 1.41 rad/s in the counter clockwise direection when viewed from above. A person with mass m = 63

  1. College Physics

    A 40 kg child is standing on the edge of a merry-go-round in a playground. Before they were deemed too dangerous, these were quite common. They were just huge rotating platforms you could sit on while someone spun you around in

  2. physics

    Two children (m = 34.0 kg each) stand opposite each other on the edge of a merry-go-round. The merry-go-round, which has a mass of 1.60 ✕ 10^2 kg and a radius of 1.6 m, is spinning at a constant rate of 0.34 rev/s. Treat the two

  3. Physics

    A merry-go-round is at rest before a child pushes it so that it rotates with a constant angular acceleration for 38.0 s. When the child stops pushing, the merry-go-round is rotating at 1.20 rad/s. How many revolutions did the

  4. Physics

    A 190-kg merry-go-round in the shape of a uniform, solid, horizontal disk of radius 1.50 m is set in motion by wrapping a rope about the rim of the disk and pulling on the rope. What constant force would have to be exerted on the

  1. Physics

    2) A child sits on a merry-go-round, 1.5 meters from the center. The merry-go-round is turning at a constant rate, and the child is observed to have a radial acceleration of 2.3m/s^2. How long does it take for the merry-go-round

  2. Physics

    A child sits on a rotating merry-go-round, 2.19 m from its center. If the speed of the child is 2.32 m/s, what is the minimum coefficient of static friction between the child and the merry-go-round that will prevent the child from

  3. Physics

    A brave child decides to grab onto an already spinning merry‑go‑round. The child is initially at rest and has a mass of 24.5 kg. The child grabs and clings to a bar that is 1.60 m from the center of the merry‑go‑round,

  4. Physics

    A child exerts a tangential 43.5-N force on the rim of a disk-shaped merry-go-round with a radius of 2.41 m. If the merry-go-round starts at rest and acquires an angular speed of 0.086 rev/s in 3.54 s, what is its mass?

You can view more similar questions or ask a new question.