physics

An automobile traveling 95 overtakes a 1.10--long train traveling in the same direction on a track parallel to the road.

Q1: If the train's speed is 75 , how long does it take the car to pass it

Q2:How far will the car have traveled in this time?

Q3:What is the time if the car and train are traveling in opposite directions?

Q4:How far will the car have traveled if the car and train are traveling in opposite directions

1. 👍
2. 👎
3. 👁
4. ℹ️
5. 🚩
1. It is easier to solve this problem if we introduce the relative velocity of the car (relative to the train). The velocity of the car relative to the train is (95-75) km/h=20 km/h.

In the relative description the train is not moving and the car is moving with constant speed 20 km/h.
a. The time the car needs to pass the train is
t = length of the train/relative speed = 1.1 km/20 (km/h) = 0.055 h =198 s.
b. To find the actual traveled distance of the car we just need to multiply the traveled time (0.055 h) by the actual speed of the car:
L = 95•0.055 = 5.225 km
c. The relative speed is v1= 95+75 =170 km/h
The time the car needs to pass the train in this case is
t1= length of the train/relative speed v1= 1.1 km/170 (km/h)=
= 0.00647h =23.3 s.
d. To find the actual traveled distance of the car we just need to multiply the traveled time (0.00647 h) by the actual speed of the car:
L = 95•0.00647 = 0.615 km.

1. 👍
2. 👎
3. ℹ️
4. 🚩
2. very Understandable

1. 👍
2. 👎
3. ℹ️
4. 🚩

Similar Questions

1. Physics

. A train is traveling down a straight track at 20 m/s when the engineer applies the brakes, resulting in an acceleration of -1.0 m/s 2 as long as the train is in motion. How far does the train move during a 40-s time interval

2. Physics

the engineer of a passenger train traveling at 25.0 m/s sights a freight train whose caboose is 200m ahead on the same track. The freight train is traveling at 15.0 m/s in the same direction as the passenger train. The engineer of

3. maths

A freight train leaves a station traveling at 32 km/h. Two hours later, a passenger train leaves the same station traveling in the same direction at 52 km/h. How long does it takes the passenger train to catch up to the freight

4. math, algegra

A Freight train is traveling 30 miles per hour. An automobile starts out from the same place 1 hour later and overtakes the train in 3 hours. What was the rate of the automobile?

1. Math

A freight train leaves the train station 44 hours before a passenger train. The two trains are traveling in the same direction on parallel tracks. If the rate of the passenger train is 11 mph faster than the freightâ€‹ train,

2. Physics

At the instant a traffic light turns green, an automobile that has been waiting at an intersection starts moving forward with a constant acceleration of 2.00m/s(squared). At the same time a truck traveling with a constant speed of

3. algebra

Train A and B are traveling in the same direction on parallel tracks. Train A is traveling at 100 mph and train B is traveling at 110 mph. Train A pases a station at 4:10 a.m. If train B passes the same station at 4:22 a.m., at

4. physics

The engineer of a passenger train traveling at 25.0 m/s sights a freight train whose caboose is 200 m ahead on the same track. The freight train is traveling at 15.0 m/s in the same direction as the passenger train. The engineer

Train A and B are traveling in the same direction on parallel tracks. Train A is traveling at 100 miles per hour and train B is traveling at 120 miles per hour. Train A passes a station at 5:20am. If train B passes the same

2. algebra

Trains A and B are traveling in the same direction on parallel tracks. Train A is traveling at 60 miles per hour and train B is traveling at 80 miles per hour. Train A passes a station at 5:15 A.M. IF train B passes the same

3. algebra

trains A and B are traveling in the same direction on paraleel tracks. Train A is traveling at 80 miles per hour and train B is traveling at 88 miles per hour. Train a passes a station at 5:10 P.M. If train B passes the same

4. Physics

At the instant a traffic light turns green, an automobile that has been waiting at an intersection starts moving forward with a constant acceleration of 2.00m/s(squared). At the same time a truck traveling with a constant speed of