AP Physics

A uniform thin rod of length 0.3m and mass 3.5kg can rotate in a horizontal plane about a vertical axis through its center. The rod is at rest when a 3g bullet traveling in the horizontal plane of the rod is fired into one end of the rod. As viewed from above, the direction of the bullet's velocity makes an angle of 60 degrees with the rod. If the bullet lodges in the rod and the angular velocity of the rod is 9 rad/s immediately after the collision, what is the magnitude of the bullet's velocity just before impact?

  1. 👍
  2. 👎
  3. 👁
  1. Use the law of conservation of angular momentum, measured about the vertical axis. Initially, the rod has no angular momentum but the bullet has angular momentum m V (L/2) cos 60 about that axis. Afterwards, the rod with embedded bullet has moment of inertia I = (1/12)ML^2 + m (L/2)^2 and its moment of inertia is I w. This is enough information to solve for m, the initial velocity V of the bullet.
    M = rod mass = 3.5 kg
    m = bullet mass = .003 kg
    L = rod length = 0.3 m
    w = final angular velocity of rod = 9 rad/s

    1. 👍
    2. 👎
  2. I had been using that equation but me was trying to solve for w instead of v! But is it definitely cosine? I had been thinking it would use sine. Thank you sooo much!

    1. 👍
    2. 👎

Respond to this Question

First Name

Your Response

Similar Questions

  1. physics please help

    One end of a thin rod is attached to a pivot, about which it can rotate without friction. Air resistance is absent. The rod has a length of 0.59 m and is uniform. It is hanging vertically straight downward. The end of the rod

  2. physics

    A thin rod has a length of 0.25 m and rotates in a circle on a frictionless tabletop. The axis is perpendicular to the length of the rod at one of its ends. The rod has an angular velocity of 0.33 rad/s and a moment of inertia of

  3. Physics

    A mass of 100g is attached to one end of a massless rod, 10cm in length, which is pivoted about the opposite end. The rod is held vertical, with the mass at the top, and released. The rod swings. A. What is the speed of the mass

  4. physics- mechanics

    A light, rigid rod with two masses attached to its ends, one of mass 3M and one of mass M, is pivoted about a horizontal axis. The mass 3M is length L from the pivot point and the mass M is length 2L from the pivot point. When

  1. Physics

    The figure below shows a thin rod, of length L and negligible mass, that can pivot about one end to rotate in a vertical circle. A heavy ball of mass m is attached to the other end. The rod is pulled aside through an angle θ and

  2. Physics.

    The figure below shows an arrangement of 15 identical disks that have been glued together in a rod-like shape of length L = 1.4500 m and (total) mass M = 135.000 g. The arrangement can rotate about a perpendicular axis through its

  3. Physics

    The rigid object shown in Fig. 10-63 consists of three balls and three connecting rods, with M = 1.5 kg, L = 0.67 m, and θ = 32°. The balls may be treated as particles, and the connecting rods have negligible mass. Determine the

  4. mechanics

    a non uniform rod ab of length 4 m and mass 5 kg is in equilibrium in horizontal position resting on two supports at point C and D wgere AC= 1 m and AD= 2 m. the magnitude of reaction at C is half of the reaction at D. Find the

  1. physics

    A thin uniform rod is rotating at an angular velocity of 7.70 rad/s about an axis that is perpendicular to the rod at its center. As the figure indicates, the rod is hinged at two places, one-quarter of the length from each end.

  2. physics

    Two 2.3 kg balls are attached to the ends of a thin rod of negligible mass, 65 cm in length. The rod is free to rotate in a vertical plane about a horizontal axis through its center. With the rod initially horizontal as shown, a

  3. Physics

    A long thin rod of mass M = 2:00 kg and length L = 75:0 cm is free to rotate about its center as shown. Two identical masses (each of mass m = .403 kg) slide without friction along the rod. The two masses begin at the rod's point

  4. physics

    A long thin rod lies along the x-axis from the origin to x=L, with L= 0.890 m. The mass per unit length, λ (in kg/m) varies according to the equation λ = λ0 (1+1.410x2). The value of λ0 is 0.700 kg/m and x is in meters. 1.

You can view more similar questions or ask a new question.