Ask questions and get helpful responses.

Calculus (Volume of Solids)

A solid has, as its base, the circular region in the xy-plane bounded by the graph of x^2 + y^2 = 4. Find the volume of the solid if every cross section by a plane perpendicular to the x-axis is a quarter circle with one of its radii in the base.

  1. 👍
  2. 👎
  3. 👁
  4. ℹ️
  5. 🚩
  1. what does "one of its radii in the base" mean? Is its radius centered on the x-axis, or on a point of the circle, or what?

    1. 👍
    2. 👎
    3. ℹ️
    4. 🚩
  2. This is precisely why I posted, I thought that the wording of this practice problem might make sense to someone else, because it completely confused me.
    After a lot of thinking, I figured that the solid of revolution was a hemisphere. It was created by rotating the quarter circle in the first quadrant around the y-axis perhaps. This resulted in a volume of (32/3)pi.

    1. 👍
    2. 👎
    3. ℹ️
    4. 🚩

Respond to this Question

First Name

Your Response

Still need help? You can ask a new question.