Calculus

L'Hospital's Rule

Lim(lnx)^(x-1)
x->1+

This is what I did so far...
Form: 0^0
ln(lnx)/ (1/x-1)

-----------------------------------

I am not sure if you could use L'Hospital Rule (as stated in the instruction)for the 2 problems below:

lim [ln(y^2+2y)]/[lny]=1
y->0+

lim xlnx = 0
x->0+

I was able to solve them without using the Rule.

  1. 👍
  2. 👎
  3. 👁
  1. Actually, I would not recommend using any rules unless you really understand why and how they work. I.e. you should be able to derive those rules from first principles. Otherwise you are just training to become some sort of math computer who does not really understand math :)

    L'Hopital's rule is actually closely related to Taylor's theorem which says that foir a sufficiently differentiable function f one has:

    f(x+h) = f(x) + h f'(x) + h^2/2 f''(x) + h^3/6 f'''(x) + higher order terms in h.

    This is something that you can easily derive and intuitively understand. Near a point x the function f will be f(x) plus correction terms. You can apply this to compute the limits as follows:

    In case of (lnx)^(x-1) you take the logarithm, using that the log of the limit is the limit of the log which follows from the fact the the logarithm is a continuous function.

    You then get the function

    (x-1)ln(ln(x))

    of which you want to compute the limit x--->1

    You then put x = 1 + h and do a series expansion in powers of h. You get:

    h(ln(ln(1+h)))

    ln(1 + h) = h - h^2/2 + O(h^3)

    where O(h^n) means a term proportional to h^n for small h. Taking the log again and using the same series expansion gives:

    ln(ln(1 + h)) =
    ln(h - h^2/2 + O(h^3)) =

    ln(h) + ln(1 - h/2 +O(h^2)) =

    ln(h) - h/2 + O(h^2)

    Multiplying this by h and taking the limit h -->0 gives -1/2, so the original limit is exp(-1/2)

    Note that we needed to go to second order in the Taylor expansion, which means that if you had used L'Hopital you would have had to use that rule twice.

    1. 👍
    2. 👎
  2. Sorry, I was a bit confused, when multiplying by h the limit becomes zero so after exponentiationg you get 1. So, You could have used L'Hopital's rule once...

    1. 👍
    2. 👎
  3. im going to figure this one out!

    1. 👍
    2. 👎

Respond to this Question

First Name

Your Response

Similar Questions

  1. calculus

    Find the limit. Use l'Hospital's Rule if appropriate. If there is a more elementary method, consider using it. lim x→∞ {(5x − 4)/(5x + 3)}^5x + 1

  2. calculus

    if dy/dx= (1+lnx)y and if y=1 when x=1, then y=

  3. calculus

    Find the limit. Use l'Hospital's Rule if appropriate. If there is a more elementary method, consider using it. lim x→0 (e^x − e^−x − 2x)/(x − sin(x))

  4. Calculus

    For which pair of functions f(x) and g(x) below will the lim(x->infinity) f(x)g(x)≠0 a)f(x) = 10x + e^-x; g(x) = (1/5x) b)f(x) = x^2; g(x) = e^-4x c)f(x) = (Lnx)^3; g(x) = 1/x d)f(x) = √x; g(x) = e^-x

  1. Calculus

    Find the minimum distance between the curves y=e^x and y=lnx. Hint: Use the fact that e^x and lnx are inverse relationships. I have no idea where to start. Thanks! calculus - Reiny, Monday, January 18, 2016 at 9:02pm to get you

  2. Calculus

    Find the limit. Use l'Hospital's Rule if appropriate. If there is a more elementary method, consider using it. lim (tan(7x))^x x~>0

  3. Calculus check and help

    Let R be the region bounded by the curves y=lnx^2 and y=x^2-4 to the right of the y-axis. A. Find the area of R. B. Find the folume geneated when R is rotated about the line y=-4. C. Write, but do not evaluate the integral

  4. Calculus

    Evaluate the function below from x = 1 up to x = 4. ∫(7−lnx(x)(3+lnx))dx

  1. Calculus

    Evaluate the limit using L'Hospital's rule if necessary. lim as x goes to +infinity x^(6/x)

  2. Pre calc

    .5ln(x+3) - lnx=0

  3. calculus

    sorry to ask a second question so soon, but i'm just not getting this one. if f(x)= 3x lnx, then f'(x)=? i used f'(x)=3x(D lnx) + D (3x) (lnx) f'(x)=3x (1/x) + 3 (lnx) so... f'(x)=3+3lnx or 3(1+lnx). unfortunately that isn't one

  4. Calculus

    Find the derivative of y with respect to x. y= (lnx)/(3+4lnx) Should I start by using the quotient rule?

You can view more similar questions or ask a new question.