Physics

Find the instantaneous velocity of a mass on a spring oscillating on a horizontal frictionless surface at the instant when its displacement is half of its maximum displacement x=(x_max/2). Assume the max velocity of that mass during each oscillation is v_max= 2m/s.

I know that I will have this: v = (2*pi)/T *(x_max/2) I'm having trouble because I don't have the period(T). I also don't know x_max

  1. 👍
  2. 👎
  3. 👁
  1. You don't need to know the period. The sum of the kinetic (1/2) M V^2 and potential energy (1/2) kX^2 is constant. When X is half the maximum value, the P.E. is 1/4 of the maximum value. That means the kinetic energy is 3/4 of its maximum value, since energy shifts from all-kinetic to all-potential.

    The maximum KE is (1/2)MV-max^2 . When it is 3/4 of that, V^2 = 3/4 V-max^2
    V = sqrt(3/2) V_max = sqrt 3 m/s

    1. 👍
    2. 👎

Respond to this Question

First Name

Your Response

Similar Questions

  1. physics

    In an arcade game a 0.142 kg disk is shot across a frictionless horizontal surface by compressing it against a spring and releasing it. If the spring has a spring constant of 174 N/m and is compressed from its equilibrium position

  2. physics

    a rifle bullet of mass 8.0g strikes and embeds itself in a block of mass 0.992kg that rests on a frictionless horizontal surface and is attached to a coil spring. the impact compresses the spring 15.0cm. calibration of the spring

  3. physics

    [20 pts] A 2.00 kg block is pushed against a spring with negligible mass and force constant k = 400 N/m, compressing it 0.220 m. When the block is released, it moves along a frictionless, horizontal surface and then up a

  4. Physics Spring

    A mass sitting on a horizontal, frictionless surface is attached to one end of a spring; the other end is fixed to a wall. 1.0 J of work is required to compress the spring by 0.12 m. If the mass is released from rest with the

  1. physics # 9

    9. A block attached to a spring of negligible mass undergoes simple harmonic motion on a frictionless horizontal surface. The potential energy of the system is zero at the equilibrium position and has a maximum value of 50 J. When

  2. Physics

    A spring is mounted horizontally. A crate which has a mass of 8.5kg is pressed against the spring with a force of 350N. As a result the spring is compressed a distance of 82.0cm. The mass is then released and is allowed to slide

  3. Physics

    Block A of mass 2.0 kg and Block B of 8.0 kg are connected by a spring of spring constant 80 N/m and negligible mass. The system is being pulled to the right across a horizontal frictionless surface by a horizontal force of 4.0 N,

  4. physics help!

    Objects of equal mass are oscillating up and down in simple harmonic motion on two different vertical springs. The spring constant of spring 1 is 155 N/m. The motion of the object on spring 1 has twice the amplitude as the motion

  1. Physics

    Suppose that a 200g mass (0.20kg) is oscillating at the end of a spring upon a horizontal surface that is essentially friction-free. The spring can be both stretched and compressed and have a spring constant of 240N/m. It was

  2. Physics

    A 500 g block is released from rest and slides down a frictionless track that begins h = 1.70 m above the horizontal, as shown in Figure P13.56. At the bottom of the track, where the surface is horizontal, the block strikes and

  3. physics

    A block with a mass of 0.5kg is pushed against a horizontal spring of negligible mass and spring constant 450 N/m until the spring is compressed a distance x. When it is released, the block travels along a frictionless, horizontal

  4. PHYSICS/MATH

    A mass and spring are arranged on a horizontal, frictionless table. The spring constant is k = 450 N/m, and the mass is 5.4 kg. The block is pushed against the spring so that the spring is compressed an amount 0.35 m, and then it

You can view more similar questions or ask a new question.