Prove that

sin(n+1)A-sin(n-1)A/cos(n+1)A+2cosnA+cos(n-1)A = tanA/2

To prove the given equation, we'll start by applying the sine addition formula for sin(n+1)A and sin(n-1)A:

sin(n+1)A = sin(nA + A)
= sin(nA)cos(A) + cos(nA)sin(A)

sin(n-1)A = sin(nA - A)
= sin(nA)cos(A) - cos(nA)sin(A)

By substituting these expressions into the given equation, we get:

(sin(n+1)A - sin(n-1)A) / (cos(n+1)A + 2cos(nA) + cos(n-1)A) = tan(A/2)

Let's simplify the left side of the equation:

[ (sin(nA)cos(A) + cos(nA)sin(A)) - (sin(nA)cos(A) - cos(nA)sin(A)) ] / (cos(n+1)A + 2cos(nA) + cos(n-1)A) = tan(A/2)

Cancelling out the terms:

2cos(nA)sin(A) / (cos(n+1)A + 2cos(nA) + cos(n-1)A) = tan(A/2)

Now, let's focus on the denominator and expand it using the cosine addition formula for cos(n+1)A and cos(n-1)A:

cos(n+1)A = cos(nA + A)
= cos(nA)cos(A) - sin(nA)sin(A)

cos(n-1)A = cos(nA - A)
= cos(nA)cos(A) + sin(nA)sin(A)

Substituting these values back into our equation, we have:

2cos(nA)sin(A) / (cos(nA)cos(A) - sin(nA)sin(A) + 2cos(nA) + cos(nA)cos(A) + sin(nA)sin(A))

By combining like terms:

2cos(nA)sin(A) / (2cos(nA) + 2cos(nA))
= 2cos(nA)sin(A) / 2(cos(nA) + cos(nA))
= cos(nA)sin(A) / (cos(nA) + cos(nA))

Using the identity sin(2θ) = 2sin(θ)cos(θ), we can further simplify:

2sin(A)cos(nA) / 2cos(nA)
= sin(A) / cos(nA)
= tan(A)

Finally, we need to prove that tan(A) is equal to tan(A/2):

Using the half-angle formula for the tangent:

tan(A/2) = sin(A) / (1 + cos(A))

We can see that tan(A) = sin(A) / cos(nA) is equivalent to tan(A/2). Hence, the given equation is proven:

(sin(n+1)A - sin(n-1)A) / (cos(n+1)A + 2cos(nA) + cos(n-1)A) = tan(A/2)