Calculus please help
 👍
 👎
 👁

 👍
 👎

 👍
 👎

 👍
 👎
Respond to this Question
Similar Questions

Maths
find the area of the region bounded by the parabola y^2= 16x and its latus rectum

MATHEMATICS, CALCULUS
Given the area bounded by the curve y = 2sin^2 x and the x  axis between x = 0 and x = pi. Calculate: .1 the area bounded. (4) .2 the volume of the solid of revolution if this area rotates around the x  axis. (6)

calculus 2
Find the area of the region bounded by the parabola y = 3x^2, the tangent line to this parabola at (1, 3), and the xaxis.

Calculus: Centers of Mass
Find the centroid of the region in the first quadrant bounded by the xaxis, the parabola y^2 = 2x, and the line x + y = 4. I've graphed the function, and it looks like a triangle with one side curved (the parabola). I'm not quite

Calc 2
Find the area of the region bounded by the parabola y = 5x2, the tangent line to this parabola at (5, 125), and the xaxis. its not 625/3

calculus
Find the centroid (¯ x, ¯ y) of the region bounded by: y = 6x^2+7x, y = 0, x = 0, and x = 7

calculous
Find the area of the region bounded by the parabola y = 4x^2, the tangent line to this parabola at (4, 64), and the xaxis.

Math
Find the centroid of the area in the first quadrant bounded by the curve y=e^x and the axes and the ordinate x=ln5

Calculus
Find the centroid of the region bounded by the curve sin x on the interval (0, pi) and the xaxis. Please help

calculus 2
Find the area of the region bounded by the parabola y = 5x^2, the tangent line to this parabola at (3, 45), and the xaxis.

Calculus
The question is find the area of the reagion that is bounded by the curve y=arctan x, x=0, x=1, and the xaxis. So I've drawn the enclosed region. To find the area would I use the Disc/shell method? If so the formula that I came

Calculus
Find the dimensions of the rectangle of largest area that has its base on the xaxis and its other two vertices above the xaxis and lying on the parabola y=4−x^2. Width = Height =
You can view more similar questions or ask a new question.