# physics emergerncyy!

A particle of mass m1 = 2.5 kg moving along the x axis collides with a particle of mass m2 = 4.7 kg initially at rest. The incoming particle is deflected in the direction 24 degrees above the x axis, whereas the target particle moves off at 14 m/s at 39 degrees below the x axis. What are the initial and final speeds of the 2.5 kg particle?

1. use the eqn v2'=v1(2*m1/(m1+m2))
This eqn is specially derived fro elastic collisions where v2=0.
The speeds should be components; north, south, east, west or up, down, leftm, right etc.
Anyways, find the components and then use pythagorean theroem.
(once you have v1, you can use several eqna, like m1v1+m2v2=m1v1'+m2v2')

posted by Matt
2. Andrew: Whether a theory is siftneciic or not is a property of the theory, and has nothing to do with how good our particle accelerators are.We clearly disagree here, the problem with your definition is that it opens the door for a lot of pseudoscience which can be easily recast in such a way so as to meet all the other requirements including mathematical consistency mentioned by Bee. (It's quite easy to build a mathematically consistent theory when you don't have to worry about experimental results). But this is mostly an issue of semantics and I don't find it particularly important, so probably won't argue about it any longer.Andrew: Yeah, I think it becomes hard to justify spending so much money on a theory which we are unable to test due to our current technological restrictions. But like I say, you can never say a theory is wrong using that criteria. All you can do is put the theory in mothballs for a couple of thousand years (which is perhaps what we should do with string theory).Here we are in full agreement as I've never claimed it makes the theory wrong, only that it should be shelved until the time comes when it can be experimentally tested. This is the issue of optimal allocation of limited funds.Andrew: Eek, you're getting your theories mixed-up here in a way which is going to cause horrible confusion. Quantum mechanics deals with the behaviour of particles, and predicts - as you say - the well-established wave/particle dual behaviour of de Broglie (lambda = h/p). But string theory attempts to describe the structure of particles - it's a completely different theory.I am not confusing them, your original comment didn't mention the structure, it mentioned behavior:Andrew: Apparently, it appears to be the case that elementary particles behave more as if they are vibrations of a particular frequency - which seems quite a plausible and attractive suggestion.This is why I pointed out it's already a part of QM. But even particle structure is to some extent part of QM if you accept zitterbewegung interpretation of it.Bee: There are reasons to dislike string theory, you name some of them, but there are also good reasons why this theory has attracted many researchers that shouldn't be dismissed either.I am not dismissing them while I personally don't find them very appealing I agree it was worth a try. But 40 years passed and nothing came out of it despite thousands of papers published. Enough is enough, the funds are limited and should be reallocated to other approaches or just general exploration. Bee: "The point I was trying to make above is that in the absence of experimental guidance it is foolish to abandon either approach as long as they fulfill the quality standards, read: they should be expressed in consistent maths.Yes, it should not be completely abandoned, it should be shelved or at least greatly scaled back until time comes when it can be tested. No one advocates burning of papers and books, the studies can always be resumed if there are valid reasons to do so. In the meantime however funding should be redirected to exploration of different known approaches and search for completely novel ones.

posted by xXQMzdYO

## Similar Questions

1. ### Physics

A particle of mass m1 = 2.5 kg moving along the x axis collides with a particle of mass m2 = 4.9 kg initially at rest. The incoming particle is deflected in the direction 22 degrees above the x axis, whereas the target particle
2. ### physics

Two forces, 1 = (3.85 − 2.85) N and 2 = (2.95 − 3.65) N, act on a particle of mass 2.10 kg that is initially at rest at coordinates (−2.30 m, −3.60 m). (a) What are the components of the particle's velocity
3. ### Physics

Particle 1 of mass 3m initially moving with a speed v0 in the positive x-direction collides with particle 2 of mass m moving in the opposite direction with an unknown speed v.After collision,particle 1 moves along the negative
4. ### Physics

A particle with m = 3.3E-27 kg is moving with a velocity of 6.0E7m/s. It then collides with a stationary particle of mass 2m, the lighter particle then moves at a right angle to the original direction with a velocity of 2.0E7m/s.
5. ### physics

Particle 1 is moving on the x-axis with an acceleration of 5.55 m/s2 in the positive x-direction. Particle 2 is moving on the y-axis with an acceleration of 7.45 m/s2 in the negative y-direction. Both particles were at rest at the
6. ### physics

Particle 1 is moving on the x-axis with an acceleration of 5.55 m/s2 in the positive x-direction. Particle 2 is moving on the y-axis with an acceleration of 7.45 m/s2 in the negative y-direction. Both particles were at rest at the
7. ### physics 30

A charged particle with mass m, and a charge q, is moving through a perpendicular magnetic field of strength B at a velocity,v. The particle is deflected through a curved path with a radius of 15.0 cm. If the speed of the same
8. ### physics

An alpha-particle collides with an oxygen nucleus which is initially at rest. The alpha-particle is scattered at an angle of 67.0 degrees from its initial direction of motion, and the oxygen nucleus recoils at an angle of 52.0
9. ### physics

An alpha particle, the nucleus of a helium atom, is at rest at the origin of a Cartesian coordinate system. A proton is moving with a velocity of v towards the alpha particle from the positive x axis direction. If the proton is
10. ### physics

three point particles are fixed in place in an xy plane. Particle A has mass mA = 3 g, particle B has mass 2.00mA, and particle C has mass 3.00mA. A fourth particle D, with mass 4.00mA, is to be placed near the other three

More Similar Questions