# Calculus

a) Find the volume formed by rotating the region enclosed by x = 6y and y^3 = x with y greater than, equal to 0 about the y-axis.

b) Find the volume of the solid obtained by rotating the region bounded by y = 4x^2, x = 1, and y = 0 about the x-axis.

c) Find the volume of the solid obtained by rotating the region bounded by y = 1/x^6, y = 0, x = 3, and x = 9, about the x-axis.

1. 👍
2. 👎
3. 👁
4. ℹ️
5. 🚩
1. I'll do (a)

First, determine where the curves intersect:
6y = y^3 at the point (6√6,√6)

You can do this using discs or shells. Using discs, or washers, you have a stack of washers. The area of a disc of outer radius R and inner hole of radis r is

m(R^2 - r^2)
Since 6y > y^3 on the interval desired

The thickness of each disc is dy. So, the volume of the stack of discs is the integral

π Int(R^2 - r^2 dy)[0,√6]
= π Int(36y^2 - (y^3)^2) dy)[0,√6]
= π Int(36y^2 - y^6 dy)[0,√6]
= π (12y^3 - 1/7 y^7)[0,√6]
= π (12*6√6 - 1/7 * 216√6)
= 36π√6(2 - 6/7)
= 36*8π√6/7

Or, if you want to calculate using shells, the volume of a shell is 2πrh

r = x, h = x^(1/3) - x/6

So, the volume of a ring of shells is

2π Int(x(x^1/3 - x/6) dx )[0,63/2]
= 2π Int(x(x^1/3 - x/6) dx )[0,63/2]
= 2π Int(x4/3 - x2/6) dx )[0,63/2]
= 2π(3/7 x7/3 - x3/18)[0,63/2]
= 2π(67/2 - 69/2/18)
= 2π*216√6(3/7 - 1/3)
= π*216√6(4/21)
= 36*8π√6/7

1. 👍
2. 👎
3. ℹ️
4. 🚩
2. Thank you!

1. 👍
2. 👎
3. ℹ️
4. 🚩

## Similar Questions

1. ### Math

Sketch the region enclosed by the lines x=0 x=6 y=2 and y=6. Identify the vertices of the region. Revolve the region around the y-axis. Identify the solid formed by the revolution calculate the volume of the solid. Leave the

2. ### calculus 2

Find the volume of the solid formed by rotating the region enclosed by y=e^(5x) , \ y=0, \ x=0, \ x=0.8 around the y-axis Please help, i have been attempting these problems for a couple of days

3. ### geometry

Sketch the region enclosed by the lines x=0 x=6 y=2 and y=6. Identify the vertices of the region. Revolve the region around the y-axis. Identify the solid formed by the revolution calculate the volume of the solid. Leave the

4. ### Math

Find the volume of the solid obtained by rotating the region enclosed by y=x^2, y=6x about the line x=0using the method of disks or washers.

1. ### calculus

1. Let R be the region in the first quadrant enclosed by the graphs of y=4-X , y=3x , and the y-axis. a. Find the area of region R. b. Find the volume of the solid formed by revolving the region R about the x-axis.

2. ### calculus

Let R be the region in the first quadrant that is enclosed by the graph of y = tanx, the x-axis, and the line x = π/3 h. Find the area of R i. Find the volume of the solid formed by revolving R about the x-axis

4. ### calculus

1. Find the volume V obtained by rotating the region bounded by the curves about the given axis. y = sin(x), y = 0, π/2 ≤ x ≤ π; about the x−axis 2. Find the volume V obtained by rotating the region bounded by the curves

1. ### Calculus

Find the volume of the solid formed by rotating the region enclosed by y=e^(1x)+4 y=0 x=0 x=0.3 about the x-axis. I attempted this problem numerous time and kept on getting 5.501779941pi, using the formale integral of pi(r^2)

2. ### Calculus

Find the volume of the solid obtained by rotating the region enclosed by y=x^3, y=25x, x ≥ 0

3. ### Math

The region enclosed by the curve y = ex, the x-axis, and the lines x = 0 and x = 1 is revolved about the x-axis. Find the volume of the resulting solid formed. How do you do this?

4. ### Calculus

Find the volume of the solid formed by rotating the region inside the first quadrant enclosed by y = x^3 y = 16 x about the x-axis.