Calculus 1 Newton's Method
 0
 5
 0
 0
asked by
Olivia
Respond to this Question
Similar Questions

calculus
Use Newton's method to solve the equation sec x = 4 in the interval x in (0, pi/2). In other words, use Newton's Method to compute arcsec(4). (You need to make a good initial guess for the root otherwise Newton's method will 
Calculus 1
Use Newton's method to approximate the root of the equation x^3+x+2=0 with initial guess x1=1 gives: 
Calculus
Starting with an initial guess of x=2, use Newton’s method to approximate (Third root of 7). Stop the iterations when your approximations converge to four decimal places of accuracy. Compare with the approximation provided by 
Calculus  Newton's Method
Use the Newton's Method to approximate the real root of the equation: f(x)=x2+cosx=0 a) What is the iterative equation of Newton's method of the given equation? b) Iterate the equation with starting point x1=5 until you get a 
numerical methods
Consider a spherical storage tank containing oil. The tank has a diameter of 8 ft. You are asked to calculate the height h to which a dipstick 10 ft long would be wet with oil when immersed in the tank when it contains 6 3 ft of 
Calculus 1
Use Newton's method to approximate the indicated root of the equation correct to six decimal places. The root of x^4 − 2x^3 + 5x^2 − 5 = 0 in the interval [1, 2] 
calculus
Use Newton's method to approximate the indicated root of the equation correct to six decimal places. The positive root of 3sinx = x^2 
Calculus
Use Newton's method to approximate a root of the equation (2 x^3 + 4 x + 4 =0) as follows. Let (x_1 = 1\) be the initial approximation. The second approximation (x_2) is ? and the third approximation (x_3) is ? 
calculus
Use Newton's method to approximate a root of the equation 3sin(x)=x as follows. Let x1=1 be the initial approximation. The second approximation x2 is and the third approximation x3 is I got x2=1.454 but can't get x3 :( 
calculus
Use Newton's method to approximate a root of the equation 3sin(x)=x as follows. Let x1=1 be the initial approximation. The second approximation x2 is and the third approximation x3 is for x2 I got 1.454 which is right but I can't