Math
 👍 0
 👎 0
 👁 445

 👍 0
 👎 0

 👍 0
 👎 0
Respond to this Question
Similar Questions

Calculus
Squares with sides of length x are cut out of each corner of a rectangular piece of cardboard measuring 3 ft by 4 ft. The resulting piece of cardboard is then folded into a box without a lid. Find the volume of the largest box

calculus
By cutting away identical squares from each corner of a rectangular piece of cardboard and folding up the resulting flaps, an open box may be made. If the cardboard is 14 in. long and 6 in. wide, find the dimensions of the box

Calculus
A box (with no top) is to be constructed from a piece of cardboard of sides A and B by cutting out squares of length h from the corners and folding up the sides. Find the value of h that maximizes the volume of the box if A = 7

Pre Calculus
A piece of cardboard measuring 13 inches by 11 inches is formed into an opentop box by cutting squares with side length x from each corner and folding up the sides. a. Find a formula for the volume of the box in terms of x b.

math
an open rectangular box is to be formed by cutting identical squares, each of side 2 in, one from each corner of a rectangular piece of cardboard, and then turning up the ends. If the area of the piece of cardboard is 160 inĀ² and

Algebra
A box with no top is to be constructed from a piece of cardboard whose length measures 6 inch more than its width. The box is to be formed by cutting squares that measure 2 inches on each side from the four corners an then folding

Calculus
Squares with sides of length x are cut out of each corner of a rectangular piece of cardboard measuring 3 ft by 4 ft. The resulting piece of cardboard is then folded into a box without a lid. Find the volume of the largest box

Basic Calculus
A piece of cardboard measuring 14 inches by 8 inches is formed into an opentop box by cutting squares with side length x from each corner and folding up the sides. FIND: 1). a formula for the volume of the box in terms of x 2).

precalc please help!!
an open box with a volume of 1500cm cubed is to be constructed by taking a piece of cardboard of 20 cm by 40 cm, cutting squares of sides length x cm from each corner and folding up the sides. show that this can be done in two

math
an open box is to be formed out of a rectangular piece of cardboard whose length is 8 cm longer than its width to form the box,a square of side 4 cm will be removed from each corner of the cardboard then the edges of the remaining

math
A box with a square base and no top is to be made from a square piece of cardboard by cutting 4in. squares from each corner and folding up the sides, as shown in the figure. The box is to hold 324 in3. How big a piece of

Calculus
A piece of cardboard measuring 13 inches by 14 inches is formed into an opentop box by cutting squares with side length x from each corner and folding up the sides. Find a formula for the volume of the box in terms of x V(x)=
You can view more similar questions or ask a new question.