Calculus
 👍 0
 👎 0
 👁 220

 👍 0
 👎 0

 👍 0
 👎 0
Respond to this Question
Similar Questions

Trig
Find sin(s+t) and (st) if cos(s)= 1/5 and sin(t) = 3/5 and s and t are in quadrant 1. =Sin(s)cos(t) + Cos(s)Sin(t) =Sin(1/5)Cos(3/5) + Cos(1/5)Sin(3/5) = 0.389418 Sin(st) =sin(s)cos(t)  cos(s)sin(t) =sin(3/5)cos(1/5) 

calculus
Find complete length of curve r=a sin^3(theta/3). I have gone thus (theta written as t) r^2= a^2 sin^6 t/3 and (dr/dt)^2=a^2 sin^4(t/3)cos^2(t/3) s=Int Sqrt[a^2 sin^6 t/3+a^2 sin^4(t/3)cos^2(t/3)]dt =a Int

calculus
Find the points on the curve y= (cos x)/(2 + sin x) at which the tangent is horizontal. I am not sure, but would I find the derivative first: y'= [(2 + sin x)(sin x)  (cos x)(cos x)]/(2 + sin x)^2 But then I don't know what to

math
Can you please check my work. A particle is moving with the given data. Find the position of the particle. a(t) = cos(t) + sin(t) s(0) = 2 v(0) = 6 a(t) = cos(t) + sin(t) v(t) = sin(t)  cos(t) + C s(t) = cos(t)  sin(t) + Cx + D

Trig.......
I need to prove that the following is true. Thanks (2tanx /1tan^x)+(1/2cos^2x1)= (cosx+sinx)/(cosx  sinx) and thanks ........... check your typing. I tried 30º, the two sides are not equal, they differ by 1 oh , thank you Mr

Calculus
Find the velocity, v(t), for an object moving along the xaxis in the acceleration, a(t), is a(t)=cos(t)sin(t) and v(0)=3 a) v(t)=sin(t) + cos(t) +3 b) v(t)=sin(t) + cos(t) +2 c) v(t)= sin(t)  cos(t) +3 d) v(t)= sin(t)  cos(t)

math;)
The equation 2sinx+sqrt(3)cotx=sinx is partially solved below. 2sinx+sqrt(3)cotx=sinx sinx(2sinx+sqrt(3)cotx)=sinx(sinx) 2sin^2x+sqrt(3)cosx=sin^2x sin^2x+sqrt(3)cosx=0 Which of the following steps could be included in the

Calculus 12th grade (double check my work please)
1.)Find dy/dx when y= Ln (sinh 2x) my answer >> 2coth 2x. 2.)Find dy/dx when sinh 3y=cos 2x A.2 sin 2x B.2 sin 2x / sinh 3y C.2/3tan (2x/3y) D.2sin2x / 3 cosh 3yz...>> my answer. 2).Find the derivative of y=cos(x^2) with

Calculus
Determine the concavity and find the points of inflection. y=2cosx + sin2x 0≤x≤2pi y'=2sinx + 2cos2x y"=2cosx4sinx How do I find the IP(s)?

precalc
use power reducing identities to prove the identity sin^4x=1/8(34cos2x+cos4x) cos^3x=(1/2cosx) (1+cos2x) thanks :)

Trig
find all solutions of 2sinx=12cosx in the interval from 0 to 360

math;)
Show that sin(x+pi)=sinx. So far, I used the sum formula for sin which is sin(a+b)=sin a cos b+cos a sin b. sin(x+pi)=sin x cos pi+cos x sin pi I think I am supposed to do this next, but I am not sure. sin(x+pi)=sin x cos x+sin
You can view more similar questions or ask a new question.