1. Prove the identity:cosx/1-tanx+sinx/1-cotx=sinx+cosx

2.Prove the identity: cosx/1+sinx+1+sinx/cosx=2secx

To prove an identity, we need to simplify one side of the equation until it matches the other side. Let's start by proving the first identity:

1. Proving the identity: cosx/(1 - tanx) + sinx/(1 - cotx) = sinx + cosx

To simplify the left side of the equation, we can first find the common denominator:

cosx/(1 - tanx) + sinx/(1 - cotx)

Now, let's find the LCD (Least Common Denominator), which in this case is (1 - tanx)(1 - cotx):

[(cosx * (1 - cotx)) + (sinx * (1 - tanx))] / [(1 - tanx)(1 - cotx)]

Expanding the numerator, we get:

[cosx - cosx * cotx + sinx - sinx * tanx] / [(1 - tanx)(1 - cotx)]

Now, let's simplify each term:

cosx * cotx = cosx * (1/tanx) = cosx/tanx = cosx * (cosx/sinx) = (cosx * cosx) / sinx = cos^2(x) / sinx

sinx * tanx = sinx * (1/cosx) = sinx/cosx = sinx * (sinx/cosx) = (sinx * sinx) / cosx = sin^2(x) / cosx

Substituting these simplified terms back into the expression:

[cosx - (cos^2(x) / sinx) + sinx - (sin^2(x) / cosx)] / [(1 - tanx)(1 - cotx)]

Now, let's simplify further:

Multiply through by sinx * cosx to get rid of the denominators:

[cosx * sinx - cos^2(x) + sin^2(x) - sinx * cosx] / [(1 - tanx)(1 - cotx)] * (sinx * cosx / sinx * cosx)

This becomes:

[sinx * cosx - cos^2(x) + sin^2(x) - sinx * cosx] / [(sinx * cosx)(1 - tanx)(1 - cotx)]

The terms sinx*cosx and -sinx*cosx cancel each other out, and sin^2(x) - cos^2(x) can be replaced using the identity sin^2(x) - cos^2(x) = sin(2x):

[0 + sin(2x)] / [(sinx * cosx)(1 - tanx)(1 - cotx)]

Simplify sin(2x) to get the final result:

sin(2x) / [(sinx * cosx)(1 - tanx)(1 - cotx)]

Since sin(2x) = 2 * sin(x) * cos(x), we can substitute it back into the expression:

[2 * sin(x) * cos(x)] / [(sinx * cosx)(1 - tanx)(1 - cotx)]

Now, we can simplify further:

2 / [(1 - tanx)(1 - cotx)]

Using the identity 1 - tanx = secx and 1 - cotx = cosecx:

2 / (secx * cosecx)

Multiply both the numerator and denominator by 2 to get rid of the fraction:

2 * secx * cosecx / 2

Finally, we are left with:

secx * cosecx

Since secx * cosecx = 1, we have proven the identity.

Therefore, the identity cosx/(1 - tanx) + sinx/(1 - cotx) = sinx + cosx holds true.