calculus
 👍 0
 👎 0
 👁 1,705

 👍 1
 👎 1

 👍 0
 👎 0

 👍 0
 👎 0

 👍 0
 👎 0

 👍 0
 👎 0
Respond to this Question
Similar Questions

math
A manufacturer of open tin boxes wishes to make use of pieces of tin with dimensions 8 in. by 15 in. by cutting equal squares from the four corners and turning up the sides. a. Let x inches be the length of the side pf the square
asked by miss 49 on July 30, 2016 
Calculus
Squares with sides of length x are cut out of each corner of a rectangular piece of cardboard measuring 3 ft by 4 ft. The resulting piece of cardboard is then folded into a box without a lid. Find the volume of the largest box
asked by Michelle on November 5, 2015 
calculus
By cutting away identical squares from each corner of a rectangular piece of cardboard and folding up the resulting flaps, an open box may be made. If the cardboard is 14 in. long and 6 in. wide, find the dimensions of the box
asked by eve on March 16, 2013 
Basic calculus
a manufacturer of open tin boxes wishes to make use of tin with dimension 10 inches by 20 inches by cutting equal squares from the four corners and turning up sides. find the lengths of the side of the square to be cut out if an
asked by Romie on March 9, 2019 
Geometry
On a rectangular piece of cardboard with perimeter 11 inches, three parallel and equally spaced creases are made. The cardboard is then folded along the creases to make a rectangular box with open ends. Letting x represent the
asked by Valerie on January 21, 2011

Calculus (Optimization)
A rectangular piece of cardboard, 8 inches by 14 inches, is used to make an open top box by cutting out a small square from each corner and bending up the sides. What size square should be cut from each corner for the box to have
asked by Mishaka on December 16, 2011 
math
a piece of cardboard is twice as it is wide. It is to be made into a box with an open top by cutting 2in squares from each corner and folding up the sides. Let x represent the width (in inches) of the original piece of cardboard.
asked by Amy on February 15, 2011 
Calculus
an open box is made by cutting out squares from the corners of a rectangular piece of cardboard and then turning up the sides. If the piece of cardboard is 12 cm by 24 cm, what are the dimensions of the box that has the largest
asked by Andrew on July 18, 2011 
Math
A box with an open top is to be constructed from a rectangular piece of cardboard with dimensions 12 in by 12 in by cutting out equal squares of side x at each corner and then folding up the sides as in the figure. Express the
asked by KC on September 10, 2012 
math
a rectangular sheet of cardboard 4m by 2m is used to make an open box by cutting squares of equal size from the four corners and folding up the sides.what size squares should be cut to obtain the largest possible volume?
asked by ct on December 22, 2011
You can view more similar questions or ask a new question.