math
 👍
 👎
 👁

 👍
 👎
Respond to this Question
Similar Questions

Trig
Find sin(s+t) and (st) if cos(s)= 1/5 and sin(t) = 3/5 and s and t are in quadrant 1. =Sin(s)cos(t) + Cos(s)Sin(t) =Sin(1/5)Cos(3/5) + Cos(1/5)Sin(3/5) = 0.389418 Sin(st) =sin(s)cos(t)  cos(s)sin(t) =sin(3/5)cos(1/5) 

Math Help Please
What are the ratios for sin A and cos A? The diagram is not drawn to scale. Triangle Description AB = 29 AC = 20 BC  21 A. sin A = 20/29, cos A = 21/29 B. sin A = 21/29, cos A = 20/21 C. sin A = 21/29, cos A = 20/29****? D. sin

math
Can you please check my work. A particle is moving with the given data. Find the position of the particle. a(t) = cos(t) + sin(t) s(0) = 2 v(0) = 6 a(t) = cos(t) + sin(t) v(t) = sin(t)  cos(t) + C s(t) = cos(t)  sin(t) + Cx + D

calculus
Find complete length of curve r=a sin^3(theta/3). I have gone thus (theta written as t) r^2= a^2 sin^6 t/3 and (dr/dt)^2=a^2 sin^4(t/3)cos^2(t/3) s=Int Sqrt[a^2 sin^6 t/3+a^2 sin^4(t/3)cos^2(t/3)]dt =a Int

Calculus
Find the velocity, v(t), for an object moving along the xaxis in the acceleration, a(t), is a(t)=cos(t)sin(t) and v(0)=3 a) v(t)=sin(t) + cos(t) +3 b) v(t)=sin(t) + cos(t) +2 c) v(t)= sin(t)  cos(t) +3 d) v(t)= sin(t)  cos(t)

Math
3. find the four angles that define the fourth root of z1=1+ sqrt3*i z = 2 * (1/2 + i * sqrt(3)/2) z = 2 * (cos(pi/3 + 2pi * k) + i * sin(pi/3 + 2pi * k)) z = 2 * (cos((pi/3) * (1 + 6k)) + i * sin((pi/3) * (1 + 6k))) z^(1/4) =

AP Calculus AB
2. For an object whose velocity in ft/sec is given by v(t) = t^2 + 6, what is its displacement, in feet, on the interval t = 0 to t = 3 secs? 3. Find the velocity, v(t), for an object moving along the xaxis if the acceleration,

Calculus 12th grade (double check my work please)
1.)Find dy/dx when y= Ln (sinh 2x) my answer >> 2coth 2x. 2.)Find dy/dx when sinh 3y=cos 2x A.2 sin 2x B.2 sin 2x / sinh 3y C.2/3tan (2x/3y) D.2sin2x / 3 cosh 3yz...>> my answer. 2).Find the derivative of y=cos(x^2) with

Trig
Given: cos u = 3/5; 0 < u < pi/2 cos v = 5/13; 3pi/2 < v < 2pi Find: sin (v + u) cos (v  u) tan (v + u) First compute or list the cosine and sine of both u and v. Then use the combination rules sin (v + u) = sin u cos v + cos v

calculus
Find the points on the curve y= (cos x)/(2 + sin x) at which the tangent is horizontal. I am not sure, but would I find the derivative first: y'= [(2 + sin x)(sin x)  (cos x)(cos x)]/(2 + sin x)^2 But then I don't know what to

trigonometry (please double check this)
Solve the following trig equations. give all the positive values of the angle between 0 degrees and 360 degrees that will satisfy each. give any approximate value to the nearest minute only. 1. sin2ƒÆ = (sqrt 3)/2 2. sin^2ƒÆ =

PreCal (Trig) Help?
The following relationship is known to be true for two angles A and B: cos(A)cos(B)sin(A)sin(B)=0.957269 Express A in terms of the angle B. Work in degrees and report numeric values accurate to 2 decimal places. So I'm pretty
You can view more similar questions or ask a new question.