calculus

A region is bounded by the function y=2x^2+3 and the x-axis over the interval(0,2). Sketch the graph of the bounded region. Use the limit process to find the area of the bounded region. Explain the step in this limit process. Please explain all procedured using correct mathematical termminology.

  1. 👍
  2. 👎
  3. 👁
  1. Dr. Simmons

    1. 👍
    2. 👎

Respond to this Question

First Name

Your Response

Similar Questions

  1. calculus

    let R be the region bounded by the x-axis, the graph of y=sqrt(x+1), and the line x=3. Find the area of the region R

  2. calculus

    Find the volume of the solid generated by revolving the region about the given line. The region in the second quadrant bounded above by the curve y = 16 - x2, below by the x-axis, and on the right by the y-axis, about the line x =

  3. Calculus

    Use the midpoint rule with n=4 to approximate the region bounded by y=-x^3 and y=-x Show that the function f(x)= (integral from 2x to 5x) (1)/(t) dt is constant on the interval (0,+infinity)

  4. calculus

    Consider the solid obtained by rotating the region bounded by the given curves about the x-axis. y = 9 - 9x^2 , y = 0 Find the volume V of this solid. Sketch the region, the solid, and a typical disk or washer. Any help or tips

  1. Calculus Help!!

    Region R is bounded by the functions f(x) = 2(x-4) + pi, g(x) = cos^-1(x/2 - 3), and the x axis. a. What is the area of the region R? b. Find the volume of the solid generated when region R is rotated about the x axis. c. Find all

  2. calculus review please help!

    1) Find the area of the region bounded by the curves y=arcsin (x/4), y = 0, and x = 4 obtained by integrating with respect to y. Your work must include the definite integral and the antiderivative. 2)Set up, but do not evaluate,

  3. Calculus

    a) Find the volume formed by rotating the region enclosed by x = 6y and y^3 = x with y greater than, equal to 0 about the y-axis. b) Find the volume of the solid obtained by rotating the region bounded by y = 4x^2, x = 1, and y =

  4. CALCULUS

    The region R is bounded by the x-axis, y-axis, x = 3 and y = 1/(sqrt(x+1)) A. Find the area of region R. B. Find the volume of the solid formed when the region R is revolved about the x-axis. C. The solid formed in part B is

  1. Calculus

    5. Find the volume of the solid generated by revolving the region bounded by y = x2, y = 0 and x = 1 about (a) the x-axis (b) the y-axis

  2. calculus

    Find the area of the region bounded by the graph of f(x)=x(x+3)(x+1) and the x-axis on the interval [-3,0]

  3. calculus II

    Find the volume of the solid obtained by rotating the region under the graph of the function f(x)=x^8/9 about the x-axis over the interval [1,2].

  4. calculus

    1. Find the volume V obtained by rotating the region bounded by the curves about the given axis. y = sin(x), y = 0, π/2 ≤ x ≤ π; about the x−axis 2. Find the volume V obtained by rotating the region bounded by the curves

You can view more similar questions or ask a new question.