Calculus
 👍 0
 👎 0
 👁 1,254

 👍 0
 👎 0
Respond to this Question
Similar Questions

calc urgent
Note that f is continuous on (−∞, 6) and (6, ∞). For the function to be continuous on (−∞, ∞), we need to ensure that as x approaches 6, the left and right limits match. First we find the left limit. lim x→6− f(x)

calcc
Note that f is continuous on (−∞, 6) and (6, ∞). For the function to be continuous on (−∞, ∞), we need to ensure that as x approaches 6, the left and right limits match. First we find the left limit. lim x→6− f(x)

Calculus
1. Evaluate the function at the given numbers (correct to six decimals places). Use the results to guess the value of the limit,or explain why it does not exist. F(t)=( t^(1/3)  1)/(t^(1/2)  1) ; t= 1.5,1.2,1.1,1.01,1.001; The

Calculus
Find the positive integers k for which lim >0 sin(sin(x))/x^k exists, and then find the value the limit. (hint:consider first k=0, then k=1. Find the limit in these simple cases. Next take k=2 and finally consder k>2 and find the

CALC (PLEASE HELP DUE SOON)
Find the limit (if it exists). (If an answer does not exist, enter DNE.) lim f(x) as x approaches 3, where f(x)= x^28x+9 if x/3 (greater than or equal to 3)

calculus
evaluate each limit, if it exists Lim as x approaches 2 (x^4  16) / (x+2)

Calculus Limits
Question: If lim(f(x)/x)=5 as x approaches 0, then lim(x^2(f(1/x^2))) as x approaches infinity is equal to (a) 5 (b) 5 (c) infinity (d) 1/5 (e) none of these The answer key says (a) 5. So this is what I know: Since

Calculus
Evaluate the limit. as x approaches infinity, lim sqrt(x^2+6x+3)x

Calculus
If g(x) is continuous for all real numbers and g(3) = 1, g(4) = 2, which of the following are necessarily true? I. g(x) = 1 at least once II. lim g(x) = g(3.5) as x aproaches 3.5. III. lim g(x) as x approaches 3 from the left =

calculus
Lim sin2h sin3h / h^2 h>0 how would you do this ?? i got 6 as the answer, just want to make sure it's right. and i couldn't get this one (use theorem 2) lim tanx/x x>0 and also this one (use squeeze theorem to evaluate the

limiting position of the particle
A particle moves along the x axis so that its position at any time t>= 0 is given by x = arctan t What is the limiting position of the particle as t approaches infinity? Answer is pi/2 How do I solve this? Thanks a lot. You want

Precal
Please determine the following limits if they exist. If the limit does not exist put DNE. lim 2+6x3x^2 / (2x+1)^2 x>  infinity lim 4n3 / 3n^2+2 n> infinity I did lim 2+6x3x^2 / (2x+1)^2 x>  infinity (2+6x3x²)/(4x²+4x+1)
You can view more similar questions or ask a new question.