if tanA=ntanX

sinA=msinX
then prove that cos^2A=(m^2-1)/(n^2-1)

To prove that cos^2A = (m^2-1)/(n^2-1), we will start by rewriting the given trigonometric equations in terms of sine and cosine.

From the given information:
1) tanA = n tanX
2) sinA = m sinX

We know that tanA = sinA / cosA and tanX = sinX / cosX. So we can rewrite equation 1 as:

sinA / cosA = n (sinX / cosX)

Cross-multiplying gives us:

sinA * cosX = n * sinX * cosA

Similarly, we can rewrite equation 2 as:

sinA = m sinX

Dividing equation 2 by equation 1, we have:

(m sinX) / (sinA * cosX) = (n sinX * cosA) / (sinA * cosX)

Canceling out sinX and cosX terms gives us:

m / sinA = n * cosA

Rearranging the equation, we get:

(m / n) = cosA / sinA

Now, using the identity cos^2A + sin^2A = 1, we can replace cosA / sinA with its equivalent terms:

(m / n) = cosA / sinA
(m / n) = cosA / (sqrt(1 - cos^2A))
(m^2 / n^2) = (cosA)^2 / (1 - cos^2A)

Cross-multiplying, we obtain:

(m^2 - m^2 * cos^2A) = n^2 * (cosA)^2

Rearranging the terms:

m^2 - m^2 * cos^2A = n^2 * cos^2A
m^2 = m^2 * cos^2A + n^2 * cos^2A
m^2 = cos^2A * (m^2 + n^2)

Now, isolating cos^2A, we divide both sides by (m^2 + n^2):

m^2 / (m^2 + n^2) = cos^2A
1 - n^2 / (m^2 + n^2) = cos^2A

Simplifying the right side, we get:

(m^2 - n^2) / (m^2 + n^2) = cos^2A

Finally, replacing m^2 - n^2 with (m^2 - 1) and m^2 + n^2 with (n^2 - 1), we obtain:

cos^2A = (m^2 - 1) / (n^2 - 1)

Therefore, we have proved that cos^2A = (m^2 - 1) / (n^2 - 1).