# geometry

a line segment is divided into two segments that are in a ratio 4 to 7. the measure of one segment is 15 inches longer than the measure of the other. Find the measure of each segment.

1. 👍 0
2. 👎 0
3. 👁 179
1. X/Y = 4/7 or y = 7x/4
y = X + 15
7X/4 = X + 15 or 7X = 4X + 60
3X = 60 making X = 20 and Y = 35.

1. 👍 0
2. 👎 0

## Similar Questions

1. ### geometry

Trisha drew a pair of line segments starting from a vertex. Which of these statements best compares the pair of line segments with the vertex? Answer A:Line segments have two endpoints and a vertex is a common endpoint where two

2. ### math

Given line segment AB on Line L, and a collinear point M, which must be true? a. M is on line L **** b. M is between A and B c. M is on line segment AB d. M is the midpoint of A and B

3. ### Geometry

Point Y lies on line segment XZ, between X and Z. The (x,y) coordinates for X and Z are (7,2) and (-3,-3), respectively. If the ratio of line segment XY to line segment YZ is 2 to 3, what are the (x,y) coordinates of Y?

Which of these is a step in constructing an inscribed square using technology? Construct segment DB, segment CE, segment EG, segment GI, and segment ID. Draw segments BR, RS, and SB Identify the points of intersection between

1. ### geometry

Which of these is a correct step in constructing congruent line segments? a) use a straightedge to draw two equal arcs from the endpoints. b) use a compass to join the endpoints of the line segment. c) use a straightedge to

2. ### Geometry

Please write a paragraph proof for this statement. Point Y is the midpoint of segment XZ. Z is the midpoint of segment YW. PRove that segment or line XY is congruent to segment or line ZW.

3. ### Geometry

I have another question that stumped me Line segment AB with length a is divided by points P and Q into three line segments: AP , PQ, and QB , such that AP = 2PQ=2QB. Find: A)the distance between point A and the midpoints of the

4. ### Math

1)Let AB be the directed line segment beginning at point A(1 , 1) and ending at point B(-4 , 6). Find the point P on the line segment that partitions the line segment into the segments AP and PB at a ratio of 5:1. A)(-3 1/6,5 1/6)

1. ### CAMBRIDGE

Points P and Q are both in the line segment AB and on the same side of its midpoint. P divides AB in the ratio 2 : 3, and Q divides AB in the ratio 3 : 4. If PQ = 2, then find the length of the line segment AB.

2. ### Algebra

A segment bisector is a line, ray, or segment that divides a line segment into two equal parts. In the triangle formed by points A(-1,7), B(1,2), and C(7,6), what is the slope of the line that goes through point A and bisects BC?

3. ### geometry

Line segment AB with the length ais divided by points P and Q into three line segments: AP , PQ , and QB , such that AP = 2PQ = 2QB. Find: (1) The distance between point A and the midpoint of segment QB ; (2) The distance between

4. ### geometry

The lengths of segments PQ and PR are 8 inches and 5 inches, respectively, and they make a 60-degree angle at P. (a) Find the area of triangle PQR. (b) Find the length of the projection of segment PQ onto segment PR. (c) Find the