# calculus

A function f(x) is said to have a removable discontinuity at x=a if:
1. f is either not defined or not continuous at x=a.
2. f(a) could either be defined or redefined so that the new function IS continuous at x=a.

Let f(x)= x2+10x+26 2 −x2−10x−24 if x−5 if x=−5 if x−5
Show that f(x) has a removable discontinuity at x=−5 and determine what value for f(−5) would make f(x) continuous at x=−5.
question:
Must redefine f(−5)=

1. 👍
2. 👎
3. 👁
1. A function with a removable discontinuity could be redefined to remove the discontinuity if, at the point of removable discontinuity (x=-5) in this case, Lim f(x) x->-5- and x->-5+ are equal.

The discontinuity can be removed by redefining f(x) such that f(-5)=one of the above limits.

As I am unable to read unambiguously the definition of the function f(x), I am not able to show that f(-5) should be.

1. 👍
2. 👎

## Similar Questions

1. ### Calculus

A function f(x) is said to have a removable discontinuity at x=a if: 1. f is either not defined or not continuous at x=a. 2. f(a) could either be defined or redefined so that the new function IS continuous at x=a.

2. ### Pre Cal

which of the following best describes the behavior of thre function f(x)=(x^2-2x)/(x^2-4) at the values not in its domain? a) one vertical asymptote, no removable discontinuities b) 2 vertical asymptotes c) two removable

Which of the following functions f has a removable discontinuity at a? If the discontinuity is removable, find a function g that agrees with f for x a and is continuous at a. (If the discontinuity is not removable, enter NONE.) 1.

4. ### Calculus

Hi! My question is: Given that f is a function defined by f(x) = (2x - 2) / (x^2 +x - 2) a) For what values of x is f(x) discontinuous? b) At each point of discontinuity found in part a, determine whether f(x) has a limit and, if

1. ### math

Use a graph to determine whether the given function is continuous on its domain. HINT [See Example 1.] f(x) = x + 7 if x < 0 2x − 5 if x ≥ 0 1 continuous discontinuous If it is not continuous on its domain, list the points of

2. ### Calculus

Let f(x)=(2x^2+5x-7)/(x-1) show that F(x) has a removable discontinuity at x=1 and determine what value for F(1) would make f(x) continuous at x=1 I'm not sure how to factor to solve for f(1)..

3. ### calculus

give an example of a function that has: a) only one point of discontinuity b) exactly two ponts of discontinuity c) an infinite number of discontinuity give an example of a function that is: a) continuous at every point b)

4. ### Calculus

Suppose g(x) = { 1 / (x - 2) if x < 1 2x - 4 if x >/= 1 The best description concerning the continuity of g(x) is that the function A.) is continuous B.) has a jump discontinuity C.) has an infinite discontinuity D.) has a

1. ### precalculus

The function has a vertical asymptote of x=2 The function has a removable discontinuity of x=-2 The function has a horizontal asymptote of y= 0 No x intercept Y-intercept is (0,-0.5) End Behavior f(x) --> 0, x? -oo f(x) ? 0, x ?

2. ### Algebra 2

What are the points of discontinuity? Are they all removable? Please show your work. ￼￼￼ y=(x-5) / x^2 - 6x +5

3. ### Calculus

Given f(x) = (x^4 + 17) / (6x^2 + x - 1) Identify any points of discontinuity, and determine (giving reasons) if they are removable, infinite (essential), or jump discontinuities. From the work that I have done so far, I know that

4. ### Calculus

Suppose f(x) = [sin(x^2 - 4)]^ -1. Identify any points of discontinuity, and determine (giving reasons) if they are removable, infinite (essential), or jump discontinuities. Okay, I presume that the [] brackets denote the greatest