Calculus
 👍
 👎
 👁
 ℹ️
 🚩

 👍
 👎
 ℹ️
 🚩
Respond to this Question
Similar Questions

calculus
Find the limit. Use l'Hospital's Rule if appropriate. If there is a more elementary method, consider using it. lim x→∞ {(5x − 4)/(5x + 3)}^5x + 1

calculus help again
if f'(x)=cos x and g'(x)=1 for all x, and if f(0)=g(0)=0, then the limit x>0 fo function f(x)/g(x)= okay, so f(x)=sinx g(x)=x and the f(0)=g(0)=0 is also satisfied and equals o. so the limit x>o of sinx/x= is the answer

Math Calc
Find the limit. (If the limit is infinite, enter '∞' or '∞', as appropriate. If the limit does not otherwise exist, enter DNE.) lim tinf (sqrt(t)+t^2)/(9tt^2)

Calculus
find the limit using l'hospital's rule lim x>negative infinity (x ln(11/x)

Math
lim as x approaches 0 (e^4x1)/sin(2x) I know you use Lhopitals rule and I know the answer is 2 but I keep getting 1. Can someone help

calculus
1) find the indicated limit, if it exist? a) lim x>2 (x^2 9)/(x^2+x2) b) lim x > ∞ √(ax^2+bx+c)/dx + e, where a > 0, b,c,d, and e are constant.

calculus again
Suppose lim x>0 {g(x)g(0)} / x = 1. It follows necesarily that a. g is not defined at x=0 b. the limit of g(x) as x approaches equals 1 c.g is not continuous at x=0 d.g'(0) = 1 The answer is d, can someone please explain how?

Calculus, please check my answers!
1. Evaluate: lim x>infinity(x^47x+9)/(4+5x+x^3) 0 1/4 1 4 ***The limit does not exist. 2. Evaluate: lim x>infinity (2^x+x^3)/(x^2+3^x) 0 1 3/2 ***2/3 The limit does not exist. 3. lim x>0 (x^37x+9)/(4^x+x^3) 0 1/4 1 ***9 The

Calculus
Find the limit. Use l'Hospital's Rule if appropriate. If there is a more elementary method, consider using it. lim (tan(7x))^x x~>0

Calculus Limits
Question: If lim(f(x)/x)=5 as x approaches 0, then lim(x^2(f(1/x^2))) as x approaches infinity is equal to (a) 5 (b) 5 (c) infinity (d) 1/5 (e) none of these The answer key says (a) 5. So this is what I know: Since

Calulus Completely lost
Find the indicated onesided limit, if it exists 1.lim f(x) and lim f(x), where x>0^+ x>0^ 2. f(x) = [2x if x is less than 0] [x^2 if x is greater than or equal to 0]

calc bc (condensed
is the limit as x approaches 0 of sin3x over 3x equal to zero? sorry basically this is my problem: lim [sin 3x / 4x) x> 0 ~~~~I multiplied& eventually got to .75* lim (sin 3x / 3x) x> 0 ~so i figured since (lim (sinx/x) x> 0