physics

A block of weight w = 25.0 N sits on a frictionless inclined plane, which makes an angle = 25.0 with respect to the horizontal, as shown in the figure. A force of magnitude F= 10.6 N , applied parallel to the incline, is just sufficient to pull the block up the plane at constant speed.

The block moves up an incline with constant speed. What is the total work done on the block by all forces as the block moves a distance L= 2.60m up the incline? Include only the work done after the block has started moving at constant speed, not the work needed to start the block moving from rest.
What is , the work done on the block by the force of gravity w as the block moves a distance
L= 2.60m up the incline?

asked by michelle

Respond to this Question

First Name

Your Answer

Similar Questions

  1. Physics

    A block of weight = 25.0 N sits on a frictionless inclined plane, which makes an angle = 34.0 with respect to the horizontal, as shown in the figure. A force of magnitude F= 14.0 N, applied parallel to the incline, is just
  2. physics

    A block of weight w = 35.0 N sits on a frictionless inclined plane, which makes an angle theta = 27.0 degrees with respect to the horizontal. A force of magnitude F = 15.9 N, applied parallel to the incline, is just sufficient to
  3. college physics

    A block of weight = 35.0 N sits on a frictionless inclined plane, which makes an angle theta = 27.0 with respect to the horizontal. A force of magnitude = 15.9 N, applied parallel to the incline, is just sufficient to pull the
  4. Physics

    A block of weight = 25.0 N sits on a frictionless inclined plane, which makes an angle = 34.0 with respect to the horizontal, as shown in the figure. A force of magnitude = 14.0 N, applied parallel to the incline, is just
  5. Physics

    A block of weight = 25.0 sits on a frictionless inclined plane, which makes an angle = 34.0 with respect to the horizontal, as shown in the figure. A force of magnitude = 14.0 , applied parallel to the incline, is just sufficient
  6. Physics

    the inclined plane is 30* from the ground a) What is the mechanical advantage of the inclined plane? b) A weight of 100N is to be lifted using the inclined plane. What is the minimum applied force for this job? c) Suppose that an
  7. physics

    the inclined plane is 30* from the ground a) What is the mechanical advantage of the inclined plane? b) A weight of 100N is to be lifted using the inclined plane. What is the minimum applied force for this job? c) Suppose that an
  8. Physics

    A wooden block of mass m = 2.3 kg starts from rest on an inclined plane sloped at an angle 26 degrees from the horizontal. The block is originally located 1.9 m from the bottom of the plane. Assume the inclined plane is friction
  9. physics

    A 3.90 kg block located on a horizontal frictionless floor is pulled by a cord that exerts a force F=14.1N at an angle theta=32.5degrees above the horizontal, as shown. a.) What is the magnitude of the acceleration of the block
  10. Physics

    A block of mass m lies on a rough plane which is inclined at an angle è to the horizontal. The coefficient of static friction between the block and the plane is ì. A force of magnitude P is now applied to the block in a

More Similar Questions