physics

What is the maximum speed with which a 1500-{\rm kg} car can round a turn of radius 67 m on a flat road if the coefficient of static friction between tires and road is 0.65?

  1. 0
asked by sam
  1. 20.65
    when car moves on a straight road the limiting force of friction should be greater than or equal to centripetal force
    i.e v=sq.root of meu r g

    posted by Rahul

Respond to this Question

First Name

Your Response

Similar Questions

  1. physics

    A 1500-kg car is making a turn with a 100.0-m radius on a road where the coefficient of static friction is 0.70. What is the maximum speed the car can go without skidding?
  2. physics1

    A 850-kg race car can drive around an unbanked turn at a maximum speed of 61 m/s without slipping. The turn has a radius of 160 m. Air flowing over the car's wing exerts a downward-pointing force (called the downforce) of 11000 N
  3. physics

    A 870-kg race car can drive around an unbanked turn at a maximum speed of 41 m/s without slipping. The turn has a radius of 180 m. Air flowing over the car's wing exerts a downward-pointing force (called the downforce) of 11000 N
  4. physics

    A 950-kg race car can drive around an unbanked turn at a maximum speed of 46 m/s without slipping. The turn has a radius of 120 m. Air flowing over the car's wing exerts a downward-pointing force (called the downforce) of 12000 N
  5. physics

    A 850-kg race car can drive around an unbanked turn at a maximum speed of 61 m/s without slipping. The turn has a radius of 160 m. Air flowing over the car's wing exerts a downward-pointing force (called the downforce) of 11000 N
  6. Physics

    An 825-kg race car can drive around an unbanked turn at a maximum speed of 59 m/s without slipping. The turn has a radius of curvature of 135 m. Air flowing over the car's wing exerts a downward-pointing force (called the
  7. Physics

    An 855-kg race car can drive around an unbanked turn at a maximum speed of 61 m/s without slipping. The turn has a radius of curvature of 165 m. Air flowing over the car's wing exerts a downward-pointing force (called the
  8. PHYSICS

    How do I solve this? A 700-kg race car can drive around an unbanked turn at a maximum speed of 41 m/s without slipping. The turn has a radius of 190 m. Air flowing over the car's wing exerts a downward-pointing force (called the
  9. Physics

    A car is rounding an unbanked circular turn with a speed of v = 35 m/s. The radius of the turn is r = 1500 m. What is the magnitude ac of the car’s centripetal acceleration?
  10. physics

    friction between tires and pavement supplies the centripetal acceleration necessary for a car to turn. Using the coefficients of friction for rubber on concrete calculate the maximum speed at which a car can round a turn of radius

More Similar Questions