calculus
 👍
 👎
 👁

 👍
 👎

 👍
 👎
Respond to this Question
Similar Questions

Calculus
An open box is formed from a piece of cardboard 12 inches square by cutting equal squares out of the corners and turning up the sides, find the dimensions of the largest box that can be made in this way.

College Algebra
A rectanguler piece of metal is 5 inches longer than it is wide. Square with sides 1 inches longer are cut from the four corners and the flaps are folded upward to form an open box. If the volume of the box is 644 inches, what are

math
An open box is made from a rectangular piece of cardboard measuring 16 cm by 10cm. Four equal squares are to be cut from each corner and flaps folded up. Find the length of the side of the square which makes the volume of the box

Pre Calculus
A piece of cardboard measuring 13 inches by 11 inches is formed into an opentop box by cutting squares with side length x from each corner and folding up the sides. a. Find a formula for the volume of the box in terms of x b.

Calculus
An open box is to be made from 8 inches by 18 inches piece of cardboard by cutting squares of equal size from the four corners and bending up the sides. How long should the sides of the squares be to obtain a box with the largest

calculus
By cutting away identical squares from each corner of a rectangular piece of cardboard and folding up the resulting flaps, an open box may be made. If the cardboard is 14 in. long and 6 in. wide, find the dimensions of the box

MAT 150
A rectangular piece of metal is 15 inches longer than it is white squares with size 3 inches longer cut from the four corners and the flaps are for the upward to form an open box if the volume of the box is 750 inches^3 What were

MATH
An open box with a square base is to be made from a square piece of cardboard 24 inches on a side by cutting out a square of side x inches from each corner and turning up the sides.Graph V=V(x)

math
an open rectangular box is to be formed by cutting identical squares, each of side 2 in, one from each corner of a rectangular piece of cardboard, and then turning up the ends. If the area of the piece of cardboard is 160 inĀ² and

Geometry
On a rectangular piece of cardboard with perimeter 11 inches, three parallel and equally spaced creases are made. The cardboard is then folded along the creases to make a rectangular box with open ends. Letting x represent the

Calculus
an open box is made by cutting out squares from the corners of a rectangular piece of cardboard and then turning up the sides. If the piece of cardboard is 12 cm by 24 cm, what are the dimensions of the box that has the largest

Calculus (Optimization)
A rectangular piece of cardboard, 8 inches by 14 inches, is used to make an open top box by cutting out a small square from each corner and bending up the sides. What size square should be cut from each corner for the box to have
You can view more similar questions or ask a new question.