Derivative
 👍
 👎
 👁

 👍
 👎
Respond to this Question
Similar Questions

math;)
The equation 2sinx+sqrt(3)cotx=sinx is partially solved below. 2sinx+sqrt(3)cotx=sinx sinx(2sinx+sqrt(3)cotx)=sinx(sinx) 2sin^2x+sqrt(3)cosx=sin^2x sin^2x+sqrt(3)cosx=0 Which of the following steps could be included in the

Calculus
For 0 < x < PI/2, if y = sin(x)^x, then dy/dx is.. I understand that you can take the natural logarithm of both sides and then take the derivative but why can't I simply take the derivative of it and get.. dy/dx =

Trig
Sin(Xy)sin(x+y)=sin^2 x  sin^2 y work on one side only...so i worked on the right =(sinxsiny)(sinx+siny) does that equal sin(xy)sin(x+y)??? help!

Math
How do I solve this? tan^2x= 2tanxsinx My work so far: tan^2x  2tanxsinx=0 tanx(tanx  2sinx)=0 Then the solutions are: TanX=0 and sinX/cosX = 2 sin X Divide through by sinX: we have to check this later to see if allowed (ie sinX

d/dx
d/dx( ln sin(pi/x) ) = ? Thanks. If those are absolute value signs, the derivative will not exist when sin (pi/x) = 0, because of the sign change that occurs there. Assume sin (pi/x) > 0 Let u(x) = pi/x and v(x) = sin x, and use

Calculus 12th grade (double check my work please)
1.)Find dy/dx when y= Ln (sinh 2x) my answer >> 2coth 2x. 2.)Find dy/dx when sinh 3y=cos 2x A.2 sin 2x B.2 sin 2x / sinh 3y C.2/3tan (2x/3y) D.2sin2x / 3 cosh 3yz...>> my answer. 2).Find the derivative of y=cos(x^2) with

Trig.......
I need to prove that the following is true. Thanks (2tanx /1tan^x)+(1/2cos^2x1)= (cosx+sinx)/(cosx  sinx) and thanks ........... check your typing. I tried 30º, the two sides are not equal, they differ by 1 oh , thank you Mr

calc
i did this problem and it isn't working out, so i think i'm either making a dumb mistake or misunderstanding what it's asking. A particle moves along the x axis so that its velocity at any time t greater than or equal to 0 is

Math  Linear Approximation
a) Find a linear approximation of y=sinx at x=pi/6 b) use part (a) to approximate sin(61pi/360) and sin(59pi/360) I just really have no idea how to approach this problem. I know the formula is y=f(a)+f'(a)(xa). Does that mean it

Trig Identities
Prove the following identities: 13. tan(x) + sec(x) = (cos(x)) / (1sin(x)) *Sorry for any confusing parenthesis.* My work: I simplified the left side to a. ((sinx) / (cosx)) + (1 / cosx) , then b. (sinx + 1) / cosx = (cos(x)) /

calculus help again
if f'(x)=cos x and g'(x)=1 for all x, and if f(0)=g(0)=0, then the limit x>0 fo function f(x)/g(x)= okay, so f(x)=sinx g(x)=x and the f(0)=g(0)=0 is also satisfied and equals o. so the limit x>o of sinx/x= is the answer

Math help again
cos(3π/4+x) + sin (3π/4 x) = 0 = cos(3π/4)cosx + sin(3π/4)sinx + sin(3π/4)cosx  cos(3π/4)sinx = 1/sqrt2cosx + 1/sqrt2sinx + 1/sqrt2cosx  (1/sqrt2sinx) I canceled out 1/sqrt2cosx and 1/sqrt2cosx Now I have 1/sqrt sinx +
You can view more similar questions or ask a new question.