Establish the following identity

Sin2x/1+cos2x=tanx

To establish the identity 𝑠𝑖𝑛^2π‘₯/(1+π‘π‘œπ‘ ^2π‘₯) = π‘‘π‘Žπ‘›π‘₯, we will use the trigonometric identity π‘‘π‘Žπ‘›^2π‘₯ + 1 = 𝑠𝑒𝑐^2π‘₯.

Start with the left-hand side (LHS) of the equation:
𝑠𝑖𝑛^2π‘₯/(1+π‘π‘œπ‘ ^2π‘₯)

Using the identity π‘‘π‘Žπ‘›^2π‘₯ + 1 = 𝑠𝑒𝑐^2π‘₯, we can rewrite the denominator 𝑠𝑖𝑛^2π‘₯/(1+π‘π‘œπ‘ ^2π‘₯) as:
𝑠𝑖𝑛^2π‘₯/(π‘‘π‘Žπ‘›^2π‘₯) (By substituting 1+cos^2π‘₯ with π‘‘π‘Žπ‘›^2π‘₯)

Next, using the identity 𝑠𝑖𝑛^2π‘₯ = 1βˆ’π‘π‘œπ‘ ^2π‘₯, we can further simplify the numerator:
(1βˆ’π‘π‘œπ‘ ^2π‘₯)/(π‘‘π‘Žπ‘›^2π‘₯) (By substituting 𝑠𝑖𝑛^2π‘₯ with 1βˆ’π‘π‘œπ‘ ^2π‘₯)

Since π‘‘π‘Žπ‘›^2π‘₯ is the reciprocal of π‘π‘œπ‘ ^2π‘₯, we can further simplify:
(1βˆ’π‘π‘œπ‘ ^2π‘₯)/(1/π‘π‘œπ‘ ^2π‘₯) (By substituting π‘‘π‘Žπ‘›^2π‘₯ with 1/π‘π‘œπ‘ ^2π‘₯)

To simplify the expression above, we multiply the numerator and denominator by π‘π‘œπ‘ ^2π‘₯:
(1βˆ’π‘π‘œπ‘ ^2π‘₯)/(1/π‘π‘œπ‘ ^2π‘₯) * π‘π‘œπ‘ ^2π‘₯/π‘π‘œπ‘ ^2π‘₯
= (1βˆ’π‘π‘œπ‘ ^2π‘₯)π‘π‘œπ‘ ^2π‘₯

Using the identity (1βˆ’π‘π‘œπ‘ ^2π‘₯)π‘π‘œπ‘ ^2π‘₯ = 𝑠𝑖𝑛^2π‘₯, we have:
𝑠𝑖𝑛^2π‘₯

Thus, the LHS simplifies to 𝑠𝑖𝑛^2π‘₯, which is equal to the right-hand side (RHS) of the equation π‘‘π‘Žπ‘›π‘₯.

Hence, we have established the identity 𝑠𝑖𝑛^2π‘₯/(1+π‘π‘œπ‘ ^2π‘₯) = π‘‘π‘Žπ‘›π‘₯.