Math(Please check!!!)

1) Evaluate (if possible) the sine, cosine, and tangent of the angles without a calculator.

a) 10pi/3

Sin = -sqrt 3/2
Cos = -1/2
Tan = sqrt 3

Are these correct ? I do not understand when to make them negative.

b) 17pi/3

Sin = -sqrt 3/2
Cos = 1/2
Tan = - sqrt 3

Are these correct?

asked by Hannah

Respond to this Question

First Name

Your Answer

Similar Questions

  1. Pre-cal (Please Check)

    1) Evaluate (if possible) the sine, cosine, and tangent of the angles without a calculator. a) 10pi/3 Sin = -sqrt 3/2 Cos = -1/2 Tan = sqrt 3 Are these correct ? I do not understand when to make them negative. b) 17pi/3 Sin =
  2. Math sin/cos

    On a piece of paper draw and label a right triangle using the given sides, solve for the unknown side and write the trigonometric functions for angles A and B, if a=5 and c=7. I already found side b which equals 2 sqrts of 6. Now
  3. Trig

    Given: cos u = 3/5; 0 < u < pi/2 cos v = 5/13; 3pi/2 < v < 2pi Find: sin (v + u) cos (v - u) tan (v + u) First compute or list the cosine and sine of both u and v. Then use the combination rules sin (v + u) = sin u cos
  4. Calculus

    Please look at my work below: Solve the initial-value problem. y'' + 4y' + 6y = 0 , y(0) = 2 , y'(0) = 4 r^2+4r+6=0, r=(16 +/- Sqrt(4^2-4(1)(6)))/2(1) r=(16 +/- Sqrt(-8)) r=8 +/- Sqrt(2)*i, alpha=8, Beta=Sqrt(2) y(0)=2,
  5. Math/Calculus

    Solve the initial-value problem. Am I using the wrong value for beta here, 2sqrt(2) or am I making a mistake somewhere else? Thanks. y''+4y'+6y=0, y(0)=2, y'(0)=4 r^2+4r+6=0, r=(-4 +/- sqrt(16-4(1)(6))/2 r=-2 +/- sqrt(2)*i , alpha
  6. Inverse trigonometric function

    How to solve without calculator 1. sin(arctan(12/5)) 2. cos(arccosx + arcsinx) Thanks. You have to know your right triangles. 5 12 13 is one. If the tan is 12/5, then the sin is 5/13. Draw a pic to confirm that. On the second:
  7. Math:)

    1. Evaluate tan[sin^-1(a)]. a. [sqrt(1-a^2)]/1-a^2 b. [sqrt(1-a^2)]/a c. sqrt(1-a^2) d. {a[sqrt(1-a^2)]}/1-a^2 I do not know the steps to find this answer and am not provided with a textbook. I have researched online some what,
  8. Calculus - Second Order Differential Equations

    Posted by COFFEE on Monday, July 9, 2007 at 9:10pm. download mp3 free instrumental remix Solve the initial-value problem. y'' + 4y' + 6y = 0 , y(0) = 2 , y'(0) = 4 r^2+4r+6=0, r=(16 +/- Sqrt(4^2-4(1)(6)))/2(1) r=(16 +/- Sqrt(-8))
  9. Calc.

    Differentiate. y= (cos x)^x u= cos x du= -sin x dx ln y = ln(cos x)^x ln y = x ln(cos x) (dy/dx)/(y)= ln(cos x) (dy/dx)= y ln(cos x) = (cos x)^x * (ln cos x) (dx/du)= x(cos x)^(x-1) * (-sin x) = - x sin(x)cos^(x-1)(x)
  10. calculus

    Differentiate. y= (cos x)^x u= cos x du= -sin x dx ln y = ln(cos x)^x ln y = x ln(cos x) (dy/dx)/(y)= ln(cos x) (dy/dx)= y ln(cos x) = (cos x)^x * (ln cos x) (dx/du)= x(cos x)^(x-1) * (-sin x) = - x sin(x)cos^(x-1)(x)

More Similar Questions