you have deposited 1000 dollars in your savings account with n annual interest rate of 4 percent compounded monthly. how much money are you going to have in your account after six months?
[(1+ 0.04/12)]^6 x 1000 = ??
is the answer 1020.164?
You got it.
well theres another part of it if you could help me with.
in the same problem find the effective interest rate after six months?
The effective interest rate is what the annual rate would be if the compounding continued at that rate.
Thus for this problem divide the rate by 12 like you did and use 12 for the number periods intead of 6 like this
1000*(1 + .04/12)^12=Amount
Subtract 1000 from that amount and divide it by 1000. That will give the effective rate and it should be slightly greater than .04
it the answer .041
It's very close to that. I got 0.0407415
However I think they want the rate based on the 6 month or 1/2 year amount. I'm not sure what your instructions were asking for.
I may've done that incorrectly. If yoy take the 1020.16 and subtract 1000 = 20.16 and divide that by 1000 you get
.0216 for 6 months, so the effective annual rate based on that is 2*.0216=.0432 since 6 months = 1/2 year.
ok thanks alot roger
If you check this problem again I may still have the wrong formula.
The formula for effective rate I found is (1+ i/n)^n-1
For this problem i=.04 and n=6 so effective rate should be 0.04067
I hope you check this problem again. Sorry about that. I haven't worked the formula for some time, so that's why I deciced to check it again.
Let me work an example so you can see how the calculations are done.
The formula is A=P*(1+r)^n where P is the initial amount, r is the rate expressed as a decimal and n is the number of periods in the compounding period.
For this problem P=1000, r=.04 and n=6. However, the interest is being compounded monthly so we need to divide the .04 by 12 so r=.04/12
Here is an example:
Suppose the amount were P=1200. r=.05 and n=6 and the interest is compounded monthly as it is for this problem.
The monthly interest rate would be r=.05/12=0.00416667
Then A=1200*(1+0.00416667)^6 and A=1230.31
In your problem substitute P=1000 for 1200, r=.0033333 and do the calculations similar to the ones I did.
find the effectivee rate correspoding to 3% compounded quarterly The formula for effective rate I found is (1+ i/n)^n - 1 where i is the annual rate as a decimal and n is the number of periods. Here i=.03 so the effective rate is
We deposited 7,500 dollars into a savings account which pays 3.6 percent annual interest, compound quarterly.How long after the money is deposited will the account balance be 9,750 dollars?What initial deposit will generate a
If P(t) is the amount of dollars in a savings bank account that pays a yearly interest rate of r% compounded continuously ,then dP/dt=(r/100)(P) , t in years . Assume the interest is 5% annually ,P(0)=$1000 ,and no monies are
You have deposited 1000$ in your saving account with an anual interst rate of 4 percent compund monthly. How much money are you going to have in your account after six months. Use A=P*(1+r)^6 r=.04/12=.01/3, P=1000 IS THE ANSWEAR
Samantha opened a savings account and deposited some money into the account. The account pays an annual simple interest rate of 5%. After 9 years, the interest earned on the account was $1,800. How much money did Samantha deposit
If you deposit P dollars into a bank account paying an annual interest rate r, with n interest payments each year, the amount A you would have after t years is A=P(1+r/n)^nt. Kevin places $100 in a savings account earning 6%
I need to see how this is answered. 1. Lauren deposited $200 into her savings account with 1% interest rate compounded annually. After 4 years her balance was $208.12. Colby deposited $200 into a savings account that earned a 2%
If x dollars is deposited every four weeks (13 times a year) into an account paying an annual interest rate r, expressed in decimal form, then the amount An in the account after n years can be approximated by the formula .If $45
Yvonne put $4,000 in a savings account. At the end of 3 years, the account had earned $960 in simple interest. A. how much does she have in her account at the end of 3 years? B. at what annual simple interest rate did the account