# Algerbra

The U.S. population in 1990 was approximately 250 million, and the average growth
rate for the past 30 years gives a doubling time of 66 years. The above formula for the
United States then becomes
P (in millions)= 250 x 2( y-1990)/66

1.What was the approximate population of the United States in 1960?

2. What will the population of the United States be in 2025 if this
growth rate continues?

P (in millions)= 250 x 2^[( y-1990)/66]

Insert y = 1960 and y = 2025 in here.

yes i do that but I do not get a correct answer. 2025-1990=35/66=.5303
1960-1990=-30/36=-.4545
what do i do from there I know the answer for the 1960 in 182 million but I am still stuck on how they got that answer

250*2^(0.5303) = ...? (use your calculator)

And:

250 million *2^(-0.4545) = 182 million

So it is the square root -0.4545

No, it's 2 to the power -0.4545.

I think you know that:

a^n = a*a*a*... *a (n factors of a)

But here n must be a positive integer. It turns out one can "continue" the power function allowing n to take on any real value and not just a positive integer.

I know I am asking a lot of question but let say -0.4545, how exactly do you figure that out, I do not have a calucator that I can push in the numbers, I use the one on my computer, that is why I am asking.

Thank You Again For your Help

If you have the e^x (or Exp) function and the ln(x) function, then you can use that:

2^(x) = e^[x*ln(2)] Or

2^(x) = Exp[x*ln(2)]

If you have just addition multiplication and division, then you can still compute it using series expansions. I can explain that later, if necessary...

1. 👍
2. 👎
3. 👁

## Similar Questions

1. ### Math

Assume the carrying capacity of the earth is 9 billion. Use the 1960s peak annual growth rate of 2.1​% and population of 3 billion to predict the base growth rate and current growth rate with a logistic model. Assume a current

2. ### Math

The growth rate of Escherichia coli, a common bacterium found in the human intestine, is proportional to its size. Under ideal laboratory conditions, when this bacterium is grown in a nutrient broth medium, the number of cells in

3. ### math

The population of Knoxville is 500,000 and is increasing at the rate of 3.75% each year. Approximately when will the population reach 1 million? Use an exponential model to solve the problem.

4. ### Algebra II Help

4) The function f(x)=2(3)^x represents the growth of a dragonfly population every year in a remote swamp. Rose wants to manipulate the formula to an equivalent form that calculates seven times a year, not just once a year. Which

1. ### Math - I really need help, please.

A town has a population of 8400 i 1990. Fifteen years later, it's population grew to 12500. Determine the average annual growth rate of this town's population. I really don't understand this problem. I've been going at it for

2. ### Calculus

The population of a region is growing exponentially. There were 40 million people in 1980 (when t=0) and 50 million people in 1990. Find an exponential model for the population (in millions of people) at any time t, in years after

3. ### College Math

Assume the carrying capacity of the earth is 8 billion. Use the 1960s peak annual growth rate of 2.1 ​% and population of 3 billion to predict the base growth rate and current growth rate with a logistic model. Assume a current

4. ### Math

he world population at the beginning of 1990 was 5.3 billion. Assume that the population continues to grow at the rate of approximately 2%/year and find the function Q(t) that expresses the world population (in billions) as a

1. ### Calculus

The number N of US cellular phone subscribers (in millions) is shown in the table. (Midyear estimates are given.) t 1996 1998 2000 2002 2004 2006 N 44 69 109 141 182 233 (a) Find the average rate of cell phone growth between the

2. ### Math

A population doubles every 18 years. Assuming exponential growth find the following: (a) The annual growth rate: (b) The continuous growth rate is

3. ### precalculus

A population doubles every 30 years. Assuming exponential growth find the following: annual growth rate: % continuous growth rate: %

4. ### math

the small intestine bacteriaa, while inhabiting areas optimal for growth have a doubling time of roughly 10 hours. A normal small intestine starting population would be approximately 10,000 bacteria per ml of fluid a) write an