Math!
 👍
 👎
 👁

 👍
 👎

 👍
 👎

 👍
 👎

 👍
 👎
Respond to this Question
Similar Questions

Calculus
At noon, ship A is 150 km west of ship B. Ship A is sailing east at 35 km/h, and ship B is sailing north at 25 km/h. How fast is the distance between the ships changing at 4:00 P.M.?

Math
A ship leaves port at noon at heads due east at 20 nautical miles/hour (20 knots). At 2PM the ship changes course to N 54° W. From the port of departure towards the ship at 3 PM, find the following: a) the bearing to the ship (to

calculus
At noon, ship A is 100 kilometers due east of ship B. Ship A is sailing west at 12 k/h and ship B is sailing S10degrees west at 10 k/h. At what time will the ships be nearest each other and what will this distance be? (hint: You

Trigonometry
Navigation A ship leaves port at noon and has a bearing of S 29° W. If the ship sails at 20 knots, how many nautical miles south and how many nautical miles west will the ship have traveled by 6:00 P.M.?

Calculus Max/Min Prob
At 7:00 am, one ship was 60 miles due east from a second ship.If the first ship sailed west at 20 mph, and the second ship sailed southeast at 30 mph, at what time are they closest together?

Math (Trig)
A ship leaves port at noon and has a bearing of S 25° W. The ship sails at 15 knots. How many nautical miles south and how many nautical miles west does the ship travel by 6:00 P.M.? (Round your answers to two decimal places.)

calc
At noon, ship A is 150 km west of ship B. Ship A is sailing east at 35 km/h and ship B is sailing north at 30 km/h. How fast is the distance between the ships changing at 4:00 PM?

Calc
At noon, ship A is 100km west of ship B. Ship A is sailing south at 30km/h and ship B is sailing north at 15km/h. How fast is the distance between the ships changing at 4:00pm?

calculus
At noon, ship A is 10 nautical miles due west of ship B. Ship A is sailing west at 15 knots and ship B is sailing north at 15 knots. How fast (in knots) is the distance between the ships changing at 3 PM? (Note: 1 knot is a speed

Math
At noon, ship A is 30 nautical miles due west of ship B. Ship A is sailing west at 16 knots and ship B is sailing north at 22 knots. How fast (in knots) is the distance between the ships changing at 7 PM? (Note: 1 knot is a speed

Calc
At noon, ship A is 100 Kilometers due east of ship B, Ship A is sailing west at 12 k/h, and ship B is sailing S10degrees west at 10k/h. At what time will the ships be nearest each other and what time will the distance be? (not a

Differential Calculus
At 9am ship B is 65 miles due east of another ship A. Ship B is then sailing due west at 10mi/h and A is sailing due south at 15 mi/hr if they continue in their respective course when will they be nearest to one another? and how
You can view more similar questions or ask a new question.