Calculus

A farmer has 1500 feet of fencing in his barn. He wishes to enclose a rectangular pen. Subdivided into two regions by a section of fence down the middle, parallel to one side of the rectangle. Express the area enclosed by the pen as a function of its width x.

  1. 👍
  2. 👎
  3. 👁
  1. So you have 2 long sections (x) and 3 short sections (y).
    3x+2y = 1500
    The area is A = xy = x(1500-3x)/2

    1. 👍
    2. 👎
    👤
    oobleck
  2. or, 2x+3y = 1500
    whichever way you define width

    1. 👍
    2. 👎
    👤
    oobleck

Respond to this Question

First Name

Your Response

Similar Questions

  1. maths calculas part

    A man who has 144m of fencing material wishes to enclose a rectangular garden.Find the maximum area he encloses

  2. math

    a rectangular pen is to be constructed alongside a barn using 120 feet of fencing. the barn will be used for one side of the pen. What should the dimensions of the pen be to maximize its area. ***Can not use calculus. This is a

  3. math

    An ostrich farmer wants to enclose a rectangular area and then divide it into 4 pens with fencing parallel to one side of the rectangle. There are 720 feet of fencing available to complete the job. What is the largest possible

  4. math

    A farmer with 2000 meters of fencing wants to enclose a rectangular plot that borders on a straight highway. If the farmer does not fence the side along the highway, what is the largest area that can be enclosed?

  1. Math

    1. A gardener has 140 feet of fencing to fence in a rectangular vegetable garden. Find the dimensions of the largest area he can fence. Find the possible rectangular area he can enclose. 2. Suppose a farmer has a large piece of

  2. pre-calc

    area of a rectangular region: a farmer wishes to create two rectangular regions bordering a river, by three fences perpendicular to the river and one connecting them. suppose that x represents the length of each of the three

  3. Algebra

    Farmer Ed has 9,000 meters of​ fencing, and wants to enclose a rectangular plot that borders on a river. If Farmer Ed does not fence the side along the​ river, what is the largest area that can be​ enclosed?

  4. Math

    A farmer has 80 feet of fencing, which she plans to use to fence in a plot of land for a pigpen. If she chooses to enclose a plot along the broad side of her barn, what is the largest area that can be enclosed? (Note: The side

  1. ALGEBRA

    A farmer has 165 feet of fencing material in which to enclose a rectangle area. He wants the length x to be greater than 50 feet and width y to be no more than 20 feet. write a system to represent this situation.

  2. Math

    A farmer wishes to put a fence around a rectangular field and then divide the field into three rectangular plots by placing two fences parallel to one of the sides. If the farmer can afford only 1600 yards of fencing, what

  3. Precalculus

    A farmer with 10000 meters of fencing wants to enclose a rectangular field and divide it into two plots with a fence parallel to the sides. What is the largest area that can be enclosed?

  4. math

    a farmer has enough fencing to build 40 feet of fence. He wishes to build a rectangular pen nest to his barn wall forming one side of the pen. What dimension should he make the pen so as to enclose the greatest possibility area?

You can view more similar questions or ask a new question.