Probability

Let Θ be a continuous random variable that represents the unknown bias (i.e., the probability of Heads) of a coin.

a) The prior PDF fΘ for the bias of a coin is of the form

fΘ(θ)=aθ9(1−θ), for θ∈[0,1],

where a is a normalizing constant. This indicates a prior belief that the bias Θ of the coin is

  1. 👍 0
  2. 👎 0
  3. 👁 761
  1. 1. High
    2. 10
    3. 10

    1. 👍 3
    2. 👎 0

Respond to this Question

First Name

Your Response

Similar Questions

  1. probability

    For each of the following sequences, determine the value to which it converges in probability. (a) Let X1,X2,… be independent continuous random variables, each uniformly distributed between −1 and 1. Let

  2. Probability

    Bias and MSE We estimate the unknown mean θ of a random variable X with unit variance by forming the sample mean Mn=(X1+⋯+Xn)/n of n i.i.d. samples Xi and then forming the estimator Θˆn=13⋅Mn. Your answers below can be

  3. Probability

    Confidence interval interpretation Every day, I try to estimate an unknown parameter using a fresh data set. I look at the data and then I use some formulas to calculate a 70% confidence interval, [Θˆ−,Θˆ+], based on the

  4. math, probability

    13. Exercise: Convergence in probability: a) Suppose that Xn is an exponential random variable with parameter lambda = n. Does the sequence {Xn} converge in probability? b) Suppose that Xn is an exponential random variable with

  1. Probability

    For each of the following sequences, determine the value to which it converges in probability. (a) Let X1,X2,… be independent continuous random variables, each uniformly distributed between −1 and 1. Let

  2. Probability

    Convergence in probability. For each of the following sequences, determine whether it converges in probability to a constant. If it does, enter the value of the limit. If it does not, enter the number “999". 1) Let X1, X2,… be

  3. Probability

    Let Θ be an unknown random variable that we wish to estimate. It has a prior distribution with mean 1 and variance 2. Let W be a noise term, another unknown random variable with mean 3 and variance 5. Assume that Θ and W are

  4. STATISTICS

    Consider a binomial random variable where the number of trials is 12 and the probability of success on each trial is 0.25. Find the mean and standard deviation of this random variable. I have a mean of 4 and a standard deviation

  1. Probability

    Question:A fair coin is flipped independently until the first Heads is observed. Let the random variable K be the number of tosses until the first Heads is observed plus 1. For example, if we see TTTHTH, then K=5. For K=1,2,3...K,

  2. probability

    Bias and MSE We estimate the unknown mean θ of a random variable X with unit variance by forming the sample mean Mn=(X1+⋯+Xn)/n of n i.i.d. samples Xi and then forming the estimator Θˆn=13⋅Mn. Your answers below can be

  3. probability

    A fair coin is flipped independently until the first Heads is observed. Let K be the number of Tails observed before the first Heads (note that K is a random variable). For k=0,1,2,…,K, let Xk be a continuous random variable

  4. probability

    Confidence interval interpretation Every day, I try to estimate an unknown parameter using a fresh data set. I look at the data and then I use some formulas to calculate a 70% confidence interval, [Θˆ−,Θˆ+], based on the

You can view more similar questions or ask a new question.