Calculus

Find the local maximum and minimum values and saddle point(s) of the function. If you have three-dimensional graphing software, graph the function with a domain and viewpoint that reveal all the important aspects of the function. (Enter your answers as a comma-separated list. If an answer does not exist, enter DNE.)

f(x, y) = x^2 +xy +y^2 +2y

  1. 👍
  2. 👎
  3. 👁
  1. This should get you started.
    https://www.wolframalpha.com/input/?i=x%5E2+%2Bxy+%2By%5E2+%2B2y

    1. 👍
    2. 👎
    👤
    oobleck

Respond to this Question

First Name

Your Response

Similar Questions

  1. Calculus - Functions?

    #1. A cubic polynomial function f is defined by f(x) = 4x^3 +ax^2 + bx + k where a, b and k are constants. The function f has a local minimum at x = -1, and the graph of f has a point of inflection at x= -2 a.) Find the values of

  2. Calculus

    Find a cubic function f(x) = ax^3 + bx^2 + cx + d that has a local maximum value of 3 at x = −2 and a local minimum value of 0 at x = 1.

  3. Calculus Please Help

    A continuous function f, defined for all x, has the following properties: 1. f is increasing 2. f is concave down 3. f(13)=3 4. f'(13)=1/4 Sketch a possible graph for f, and use it to answer the following questions about f. A. For

  4. calculus

    2. Consider the function f defined by f(x)=(e^X)cosx with domain[0,2pie] . a. Find the absolute maximum and minimum values of f(x) b. Find the intervals on which f is increasing. c. Find the x-coordinate of each point of

  1. Calculus

    A cubic polynomial function f is defined by f(x) = 4x^3 + ax^2 + bx + k? A cubic polynomial function f is defined by: f(x) = 4x^3 + ax^2 + bx + k where a, b, and k are constants. The function f has a local minimum at x= -1, and

  2. AP Calculus

    Consider the curve given by x^2+4y^2=7+3xy a) Show that dy/dx=(3y-2x)/(8y-3x) b) Show that there is a point P with x-coordinate 3 at which the line tangent to the curve at P is horizontal. Find the y-coordinate of P. c) Find the

  3. Calculus

    Let g be a function that is defined for all x, x ≠ 2, such that g(3) = 4 and the derivative of g is g′(x)=(x^2–16)/(x−2), with x ≠ 2. a.Find all values of x where the graph of g has a critical value. b.For each critical

  4. Calculus

    Explain why or why not: 1. if f'(c)=0, then f has a local maximum or minimum at c. 2. if f''(c)=0, then f has an inflection point at c. 3. F'(x)=x^2+10 and G(x)=x^2-100 are antiderivatives of the same function 4. Between two local

  1. math

    Determine whether the given quadratic function has a minimum value or maximum value. Then find the coordinates of the minimum or maximum point.f(x) = x2 + 2x - 9

  2. Math

    Use the given graph of the function on the interval (0,8] to answer the following questions. Where does the function f have a local maximum? Answer (separate by commas): x= Where does the function f have a local minimum? What is

  3. Algebra 2

    1. By graphing the system of constraints, find the values of x and y that maximize the objective function. 2

  4. AP CALC. AB

    Let h be a function defined for all x≠0 such that h(4)=-3 and the derivative h is given by h'(x)=(x^2-2)/(x) for all x≠0 a). Find all values of x for which the graph of h has a horizontal tangent, and determine whether h has a

You can view more similar questions or ask a new question.